Patients with alcohol-related cirrhosis (ALD) are prone to infection. Circulating neutrophils in ALD are dysfunctional and predict development of sepsis, organ dysfunction, and survival. Neutrophil granules are important effector organelles containing a toxic array of microbicidal proteins, whose controlled release is required to kill microorganisms while minimizing inflammation and damage to host tissue. We investigated the role of these granular responses in contributing to immune disarray in ALD. Neutrophil granular content and mobilization were measured by flow cytometric quantitation of cell-surface/intracellular markers, [secretory vesicles (CD11b), secondary granules (CD66b), and primary granules (CD63; myeloperoxidase)] before and after bacterial stimulation in 29 patients with ALD cirrhosis (15 abstinent; 14 actively drinking) compared with healthy controls (HC). ImageStream Flow Cytometry characterized localization of granule subsets within the intracellular and cell-surface compartments. The plasma cytokine environment was analyzed using ELISA/cytokine bead array. Circulating neutrophils were primed in the resting state with upregulated surface expression of CD11b ( = 0.0001) in a cytokine milieu rich in IL-8 ( < 0.001) and lactoferrin ( = 0.035). Neutrophils showed exaggerated mobilization to the cell surface of primary granules at baseline ( = 0.001) and in response to -formyl-l-methionyl-l-leucyl-l-phenylalanine ( = 0.009) and ( = 0.0003) in ALD. There was no deficit in granule content or mobilization to the cell membrane in any granule subset observed. Paradoxically, active alcohol consumption abrogated the hyperresponsive neutrophil granular responses compared with their abstinent counterparts. Neutrophils are preprimed at baseline with augmented effector organelle mobilization in response to bacterial stimulation; neutrophil degranulation is not a mechanism leading to innate immunoparesis in ALD. Neutrophil granule release is dysregulated in patients with alcohol-related cirrhosis (ALD) with augmented effector organelle mobilization and microbiocidal protein release. Neutrophil granules are upregulated in ALD at baseline and demonstrate augmented responses to bacterial challenge. The granular responses in ALD did not contribute to the observed functional deficit in innate immunity but rather were dysregulated and hyperresponsive, which may induce bystander damage to host tissue. Paradoxically, active alcohol consumption abrogated the excessive neutrophil granular responses to bacterial stimulus compared with their abstinent counterparts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625135PMC
http://dx.doi.org/10.1152/ajpgi.00112.2016DOI Listing

Publication Analysis

Top Keywords

granular responses
16
effector organelle
12
organelle mobilization
12
alcohol-related cirrhosis
12
neutrophil granular
12
ald
9
protein release
8
patients alcohol-related
8
cirrhosis ald
8
circulating neutrophils
8

Similar Publications

A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.

View Article and Find Full Text PDF

Comparative analysis of adenosine 1 receptor expression and function in hippocampal and hypothalamic neurons.

Inflamm Res

January 2025

Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.

Background: Adenosine, an ATP degradation product, is a sleep pressure factor. The adenosine 1 receptor (A1R) reports sleep need. Histaminergic neurons (HN) of the tuberomamillary nucleus (TMN) fire exclusively during wakefulness and promote arousal.

View Article and Find Full Text PDF

Microbial fuel cells to monitor natural attenuation around groundwater plumes.

Environ Sci Pollut Res Int

January 2025

School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.

This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.

View Article and Find Full Text PDF

Native ecosystem and biodiversity loss from land use conversion into human-modified landscapes are evident in the United States and globally. In addition to public land conservation, there is an increase in private land conservation through conservation easements (CEs) across exurban landscapes. Not every CE was established strictly for biodiversity protection and permitted land uses can increase human modification.

View Article and Find Full Text PDF

Deciphering the code of temperature rise on aerobic granular sludge stability: A DSF-c-di-GMP mediated regulatory mechanism.

Environ Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China. Electronic address:

Diffusible signal factor (DSF)-c-di-GMP-mediated strategies have been proposed as an effective regulatory approach for signal molecules in aerobic granular sludge (AGS). The increase in temperature from low to normal levels had a significant impact on AGS stability. In this study, two reactors were established to investigate the effects of different temperature rise modes (abrupt or gradual) on AGS stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!