The 3-Ketosteroid-9α-Hydroxylase, also known as KshAB [androsta-1,4-diene-3,17-dione, NADH:oxygen oxidoreductase (9α-hydroxylating); EC 1.14.13.142)], is a key enzyme in the general scheme of the bacterial steroid catabolism in combination with a 3-ketosteroid-Δ-dehydrogenase activity (KstD), being both responsible of the steroid nucleus (rings A/B) breakage. KshAB initiates the opening of the steroid ring by the 9α-hydroxylation of the C9 carbon of 4-ene-3-oxosteroids (e.g. AD) or 1,4-diene-3-oxosteroids (e.g. ADD), transforming them into 9α-hydroxy-4-androsten-3,17-dione (9OHAD) or 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD), respectively. The redundancy of these enzymes in the actinobacterial genomes results in a serious difficulty for metabolic engineering this catabolic pathway to obtain intermediates of industrial interest. In this work, we have identified three homologous kshA genes and one kshB gen in different genomic regions of R. ruber strain Chol-4. We present a set of data that helps to understand their specific roles in this strain, including: i) description of the KshAB enzymes ii) construction and characterization of ΔkshB and single, double and triple ΔkshA mutants in R. ruber iii) growth studies of the above strains on different substrates and iv) genetic complementation and biotransformation assays with those strains. Our results show that KshA2 isoform is needed for the degradation of steroid substrates with short side chain, while KshA3 works on those molecules with longer side chains. KshA1 is a more versatile enzyme related to the cholic acid catabolism, although it also collaborates with KshA2 or KshA3 activities in the catabolism of steroids. Accordingly to what it is described for other Rhodococcus strains, our results also suggest that the side chain degradation is KshAB-independent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2017.06.011 | DOI Listing |
Microorganisms
December 2024
Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, Level 5, 75 Montrose Street, Glasgow G11XJ, UK.
The resistance of 16 strains to diesel fuel was studied. The minimal inhibitory concentrations of diesel fuel against were 4.0-64.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
Phenol is a highly concerning pollutant in petrochemical industrial wastewater. It is extremely poisonous, carcinogenic, and persistent, therefore, it bioaccumulates in the food chain reaching humans, where it causes acute irritation to the skin, eyes, and respiratory tract, as well as chronic effects on the liver, kidneys, and nervous system. It spills or leaks easily into surface water or groundwater sources, leading to the creation of other harmful substituted compounds.
View Article and Find Full Text PDFInt J Biol Macromol
February 2025
State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Life Science, Guizhou Normal University, Universities Town, Huaxi District, Guiyang, Guizhou 550025, China. Electronic address:
Blue light, as an important environmental factor, greatly affects the production of Monascus pigments (MPs) and citrinin in Monascus spp. In this study, the deletion, complementation, and overexpression mutants of MrcreD from Monascus ruber M7, which encodes an arrestin-like protein, were constructed and cultivated on PDA (Potato dextrose agar) medium to study the effects of blue light on MPs and citrinin production. The results revealed that blue light inhibited the formation of cleistothecia, conidia, and the production of MPs and citrinin in M.
View Article and Find Full Text PDFMycobiology
September 2024
Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea.
The section includes xerophilic fungi that are economically significant and broadly distributed in natural settings as well as human habitats and are recognized for their sustenance on substrates with low water activity. Accurate identification of fungal species is essential for any reliable advances in mycological research. In this study, 108 strains from the section , originating from Korea and conserved at the Korean Agricultural Culture Collection, were subjected to re-identification using a combined dataset that included partial sequences of β-tubulin (), Calmodulin (), and RNA polymerase II second largest subunit () genes, along with their morphological characteristics.
View Article and Find Full Text PDFISME J
January 2024
Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain.
Viruses shape microbial community structure and activity through the control of population diversity and cell abundances. Identifying and monitoring the dynamics of specific virus-host pairs in nature is hampered by the limitations of culture-independent approaches such as metagenomics, which do not always provide strain-level resolution, and culture-based analyses, which eliminate the ecological background and in-situ interactions. Here, we have explored the interaction of a specific "autochthonous" host strain and its viruses within a natural community.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!