Introduction: In commercial spaceflight, anxiety could become mission-impacting, causing negative experiences or endangering the flight itself. We studied layperson response to four varied-length training programs (ranging from 1 h-2 d of preparation) prior to centrifuge simulation of launch and re-entry acceleration profiles expected during suborbital spaceflight. We examined subject task execution, evaluating performance in high-stress conditions. We sought to identify any trends in demographics, hemodynamics, or similar factors in subjects with the highest anxiety or poorest tolerance of the experience.

Methods: Volunteers participated in one of four centrifuge training programs of varied complexity and duration, culminating in two simulated suborbital spaceflights. At most, subjects underwent seven centrifuge runs over 2 d, including two +Gz runs (peak +3.5 Gz, Run 2) and two +Gx runs (peak +6.0 Gx, Run 4) followed by three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz, peak +6.0 Gx and +4.0 Gz). Two cohorts also received dedicated anxiety-mitigation training. Subjects were evaluated on their performance on various tasks, including a simulated emergency.

Results: Participating in 2-7 centrifuge exposures were 148 subjects (105 men, 43 women, age range 19-72 yr, mean 39.4 ± 13.2 yr, body mass index range 17.3-38.1, mean 25.1 ± 3.7). There were 10 subjects who withdrew or limited their G exposure; history of motion sickness was associated with opting out. Shorter length training programs were associated with elevated hemodynamic responses. Single-directional G training did not significantly improve tolerance.

Discussion: Training programs appear best when high fidelity and sequential exposures may improve tolerance of physical/psychological flight stressors. The studied variables did not predict anxiety-related responses to these centrifuge profiles.Blue RS, Bonato F, Seaton K, Bubka A, Vardiman JL, Mathers C, Castleberry TL, Vanderploeg JM. The effects of training on anxiety and task performance in simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(7):641-650.

Download full-text PDF

Source
http://dx.doi.org/10.3357/AMHP.4807.2017DOI Listing

Publication Analysis

Top Keywords

suborbital spaceflight
16
training programs
16
simulated suborbital
12
effects training
8
training anxiety
8
anxiety task
8
task performance
8
performance simulated
8
runs peak
8
peak +60
8

Similar Publications

Introduction: During centrifuge-simulated suborbital spaceplane flights, launch and re-entry frequently cause visual symptoms, and G-induced loss of consciousness can occur. G-related effects may be more prominent during re-entry from microgravity on actual flights. A modified anti-G maneuver that does not involve a breath strain and is suitable for members of the public may be effective against these effects.

View Article and Find Full Text PDF

For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases.

View Article and Find Full Text PDF

Human access to space is expanding rapidly in the commercial environment, with various private companies offering commercial flights to spaceflight participants (SFPs). SFPs are more likely than career astronauts to have medical conditions novel to spaceflight and may not have undergone as rigorous a medical screening process as that used for career astronauts, representing new and unstudied risks in the spaceflight environment. We report participation of a subject with recent median sternotomy for aortic valve replacement and atrial septal defect closure in centrifuge-simulated dynamic phases of orbital and suborbital spaceflight.

View Article and Find Full Text PDF
Article Synopsis
  • Recent spaceflights with nonprofessional individuals have sparked interest in suborbital space tourism while raising concerns about the safety and health risks associated with space travel.
  • Key health risks include DNA damage from cosmic radiation and changes in organ function due to microgravity, both of which can disrupt cellular processes and potentially affect heart health.
  • The review emphasizes the importance of researching the cardiovascular effects of space conditions to identify countermeasures and develop effective treatments for those exposed to space environments.
View Article and Find Full Text PDF

One of the crucial branches of activity at the Łukasiewicz Research Network-Institute of Aviation is developing a suborbital rocket vehicle capable of launching small payloads beyond the Earth's atmosphere, reaching over 100 km in altitude. Ensuring safety is a primary concern, particularly given the finite flight zone and impact area. Crucial to safety analysis is the wind profile, especially in the very first seconds of a flight, when rocket velocity is of the same order as the wind speed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!