Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models.

Gait Posture

School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; Centre for Musculoskeletal Research, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; Department of Mechanical Engineering, The University of Sheffield, United Kingdom; INSIGNEO Institute for In Silico Medicine, The University of Sheffield, United Kingdom. Electronic address:

Published: September 2017

AI Article Synopsis

Article Abstract

Joint kinematics can be calculated by Direct Kinematics (DK), which is used in most clinical gait laboratories, or Inverse Kinematics (IK), which is mainly used for musculoskeletal research. In both approaches, joint centre locations are required to compute joint angles. The hip joint centre (HJC) in DK models can be estimated using predictive or functional methods, while in IK models can be obtained by scaling generic models. The aim of the current study was to systematically investigate the impact of HJC location errors on lower limb joint kinematics of a clinical population using DK and IK approaches. Subject-specific kinematic models of eight children with cerebral palsy were built from magnetic resonance images and used as reference models. HJC was then perturbed in 6mm steps within a 60mm cubic grid, and kinematic waveforms were calculated for the reference and perturbed models. HJC perturbations affected only hip and knee joint kinematics in a DK framework, but all joint angles were affected when using IK. In the DK model, joint constraints increased the sensitivity of joint range-of-motion to HJC location errors. Mean joint angle offsets larger than 5° were observed for both approaches (DK and IK), which were larger than previously reported for healthy adults. In the absence of medical images to identify the HJC, predictive or functional methods with small errors in anterior-posterior and medial-lateral directions and scaling procedures minimizing HJC location errors in the anterior-posterior direction should be chosen to minimize the impact on joint kinematics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2017.06.002DOI Listing

Publication Analysis

Top Keywords

joint kinematics
16
joint
12
joint centre
12
hjc location
12
location errors
12
hip joint
8
children cerebral
8
cerebral palsy
8
kinematic models
8
kinematics clinical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!