The effects of running with or without shoes on injury prevention have been extensively studied, and several investigations have assessed biomechanical differences between them. However, findings are not consensual and further insights on biomechanical load associated with differently shod or barefoot conditions may be needed. This study aimed to observe if habitually shod marathon runners show acute alterations when running barefoot or with minimalist shoes, and to determine whether the running kinematical adaptations of wearing minimalist shoes were similar to barefoot running. Twelve male marathon runners ran on the treadmill at their average marathon pace in different footwear conditions: habitual running shoes, minimalist shoes, and barefoot. High-resolution infrared cameras and visual 3D software were used to assess kinematic data. The following parameters were studied: foot strike angle, cycle time, stance time, normalized stride length, hip, knee, and ankle angular position at initial contact, and their respective range-of-motion (ROM) during stance phase. Contrary to the expectations, it was found that highly trained habitually shod elite marathon runners changed their lower limb kinematic pattern both when running barefoot or wearing minimalist shoes. Minimalist shoes showed a trend towards intermediate biomechanical effects between running with and without shoes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02640414.2017.1340657 | DOI Listing |
Clin Biomech (Bristol)
December 2024
Facultad de Enfermería y Podología, Universidad de Valencia, C/Jaume Roig s/n, 46010, Valencia, Spain. Electronic address:
Background: Normal dorsiflexion of the first metatarsophalangeal joint during dynamic activities is critical for effective propulsion. Therapeutic foot orthotics may address the pathomechanical loading and joint kinematics issues faced by this population. This study aims to evaluate the effect of two different types of Custom-made foot orthosis compared to shod condition on the stiffness of the rearfoot, midfoot, and 1st metatarsophalangeal joint during walking in patients with Structural Hallux Limitus.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.
The use of minimalist shoes can lead to enhanced foot somatosensory activation and postural stability but can also increase the incidence of overuse injuries during high-impact or prolonged activities. Therefore, it appears useful to explore new strategies that employ minimalist shoes to effectively facilitate the somatosensory activation of the foot while minimizing acute and cumulative joint stress and risk of injury. To this purpose, this study introduces a novel exercise paradigm: walking for three minutes in ultra-minimalist shoes on artificial flat surfaces designed to mimic highly rugged natural terrains.
View Article and Find Full Text PDFClin Biomech (Bristol)
December 2024
Department of Rehabilitation Sciences, Musculoskeletal Rehabilitation Research Group, Katholieke Universiteit Leuven (KU Leuven), Bruges, Belgium; Universitaire Ziekenhuizen KU Leuven (UZ Leuven), Campus Pellenberg, Clinical Motion Analysis Laboratorium (CMAL), Lubbeek, Belgium; Haute Ecole Leonard De Vinci, Secteur Santé, Département de Podologie, Brussels, Belgium.
Background: Specific foot exercises and the use of minimalist shoes during running or daily life were suggested to strengthen the intrinsic foot muscles and to modify locomotion biomechanics. We aimed to review the effectiveness of these interventions to modify foot muscle sizes, foot strength, and biomechanical outcomes.
Method: PubMed, Embase, Cochrane Library and SportDiscus databases were searched (last update: 12 March 2024).
Sensors (Basel)
October 2024
KU Leuven, Musculoskeletal Rehabilitation Research Group, Department of Rehabilitation Sciences, Campus Brugge, Spoorwegstraat 12, 8200 Bruges, Belgium.
The first metatarsophalangeal joint (MTPJ) and the first ray are crucial in walking, particularly during propulsion. Limitation in this joint's sagittal plane motion, known as hallux limitus, can cause compensatory movements in other joints. Some studies assessed the impact of various foot orthoses designs on the foot biomechanics; however, a comprehensive understanding is lacking.
View Article and Find Full Text PDFJ Sports Sci
June 2024
School of Health Sciences, Western Sydney University, Campbelltown, Australia.
Minimalist walking shoes have been shown to improve foot muscle size and strength in active adults, but not in our previous study involving children, which could relate to the more structured footwear used in our study. Hence, this study examined the effects of true minimalists on intrinsic foot muscle size and strength, foot arch integrity, and physical function among primary school children. After a baseline assessment, 30 primary school students aged between 9 and 12 were given a pair of minimalist shoes (minimalist index = 92%) as their regular school shoes for two school terms, followed by a re-assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!