Cross-Reactive Synbody Affinity Ligands for Capturing Diverse Noroviruses.

Anal Chem

Biodesign Institute Center for Innovations in Medicine, and ‡Biodesign Institute Center for Immunotherapy, Vaccines, and Virotherapy, and School of Life Sciences, Arizona State University, Tempe, Arizona 85281, United States.

Published: July 2017

Noroviruses are the most common cause of acute gastroenteritis in the developed world. Noroviruses are a diverse group of nonenveloped RNA viruses that are continuously evolving. This leads to the rise of immunologically distinct strains of the same genotype on a frequent basis. This diversity presents a unique challenge for detection and tracking of new strains, with the continuous need for new norovirus affinity ligands. Our group developed a family of bivalent synbody affinity ligands using a virus-like particle (VLP) from the 2006 GII.4 Minerva strain of norovirus. We produced more than 20 synbodies with low nanomolar dissociation constants (K < 10 nM) for GII.4 VLP. We measured binding affinity for four synbodies against VLPs from multiple GI and GII genotypes and found that the synbodies were broadly cross-reactive with affinities that ranged from 0.5 to 8 nM. We tested the ability of these synbodies to capture norovirus from dilute solutions and found that one synbody could capture GII.4 from a 200 000-fold dilution from a norovirus positive stool sample. When these synbodies were tested for the ability to capture of multiple genotypes, we found that four different genotypes were recognized. These data demonstrate that the synbody approach can generate multiple affinity ligands for future use in norovirus detection and possible therapeutic development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b01337DOI Listing

Publication Analysis

Top Keywords

affinity ligands
16
synbody affinity
8
tested ability
8
affinity
5
norovirus
5
synbodies
5
cross-reactive synbody
4
ligands
4
ligands capturing
4
capturing diverse
4

Similar Publications

Deep eutectic solution elution assisted ligand affinity assay: A useful tool for the active coumarins screening from Fructus cnidii.

Anal Chim Acta

January 2025

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China. Electronic address:

Background: Many of the ligand affinity analyses are presented in water environment, and the hydrophilic solution such as methanol is used for dissociating the bound compounds. The obtained dissociation solution needs to be concentrated for improving the sensitivity of the assay. However, it is not good for the analysis of hydrophobic and volatile compounds such as coumarins.

View Article and Find Full Text PDF

Improved activity and stability of cellulase by immobilization on FeO nanoparticles functionalized with Reactive Red 120.

Int J Biol Macromol

January 2025

Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran. Electronic address:

Cellulase is extensively used in the biorefinery of cellulosic materials to fermentable sugars in bioethanol production. Application of cellulase in the free form has disadvantages in enzyme wastage and low stability. The results of the present work showed these drawbacks can be solved by cellulase immobilization on functionalized FeO magnetic nanoparticles (MNPs) with reactive red 120 (RR120) as the affinity ligands.

View Article and Find Full Text PDF

Prostate cancer (PCa) has emerged to be the second leading cause of cancer-related deaths in men. Molecular imaging of PCa using targeted radiopharmaceuticals specifically to PCa cells promises accurate staging of primary disease, detection of localized and metastasized tumours, and helps predict the progression of the disease. Glutamate urea heterodimers have been popularly used as high-affinity small molecules in the binding pockets of popular and well-characterized PCa biomarker, prostate specific membrane antigen (PSMA).

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Vaccinex, Inc., Rochester, NY, USA.

Background: The earliest recognized biomarker of AD is deposition of Aβ amyloid that leads to formation of plaques and may, over time, trigger or at least be followed by gliosis/neuroinflammation and neurofibrillary tangles, accompanied by neurodegenerative changes including neuronal and synaptic loss. We have previously reported that semaphorin 4D (SEMA4D), the major ligand of plexin B receptors expressed on astrocytes, is upregulated in diseased neurons during progression of AD and Huntington's disease (HD). Binding of SEMA4D to PLXNB receptors triggers astrocyte reactivity, leading to loss of neuroprotective homeostatic functions, including downregulation of glutamate and glucose transporters (doi:10.

View Article and Find Full Text PDF

Background: The association between medial temporal and neocortical SUVR depends on availability of cortical tau. However, tracer differences in affinity and off-target binding might interfere in these associations. Here, we examined the association between medial temporal and neocortical SUVR using voxel-based approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!