Hydrogenation of alkenes with C═C bonds is a ubiquitous reaction in organic chemistry. However, this transformation remains unknown for heavier counterparts, disilenes with Si═Si bonds. Here we report the isolation of (Z)-diiminodisilyldisilene 2 featuring a highly trans-bent and twisted structure and the longest silicon-silicon double bond reported to date. In silico studies suggested that the Si═Si bond in 2 is described as very weak double donor-acceptor bond. We utilized the remarkable electronic and structural features of this product to achieve the first demonstration of hydrogen activation by a multiply bonded silicon compound under ambient conditions. Interestingly, NMR and X-ray analysis gave exclusively racemic (RR/SS)-1,2-disilane 3a, indicating a stereospecific trans-hydrogenation of the Si═Si bond. In-depth calculations revealed that in strong contrast to the reactivity of C═C bonds, a concerted anti-addition pathway was favored due to the twisted structure of 2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b05335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!