Exposure to molds and mycotoxins not only contributes to the onset of respiratory disease, it also affects the ocular surface. Very few published studies concern the evaluation of the effect of mycotoxin exposure on ocular cells. The present study investigates the effects of aflatoxin B₁ (AFB₁) and gliotoxin, two mycotoxins secreted by molds, on the biological activity of the human corneal epithelial (HCE) cells. After 24, 48, and 72 h of exposure, cellular viability and inflammatory response were assessed. Both endpoint cell viability colorimetric assays and continuous cell impedance measurements, providing noninvasive real-time assessment of the effect on cells, were performed. Cytokine gene expression and interleukin-8 release were quantified. Gliotoxin appeared more cytotoxic than AFB₁ but, at the same time, led to a lower increase of the inflammatory response reflecting its immunosuppressive properties. Real-time cell impedance measurement showed a distinct profile of cytotoxicity for both mycotoxins. HCE cells appeared to be a well-suited in vitro model to study ocular surface reactivity following biological contaminant exposure. Low, but persistent inflammation, caused by environmental factors, such as fungal toxins, leads to irritation and sensitization, and could be responsible for allergic manifestations which, in turn, could lead to mucosal hyper-reactivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535144PMC
http://dx.doi.org/10.3390/toxins9070197DOI Listing

Publication Analysis

Top Keywords

inflammatory response
12
mycotoxins secreted
8
human corneal
8
corneal epithelial
8
cells exposure
8
ocular surface
8
hce cells
8
cell impedance
8
cells
5
impact mycotoxins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!