Bioprinting can be defined as 3D patterning of living cells and other biologics by filling and assembling them using a computer-aided layer-by-layer deposition approach to fabricate living tissue and organ analogs for tissue engineering. The presence of cells within the ink to use a 'bio-ink' presents the potential to print 3D structures that can be implanted or printed into damaged/diseased bone tissue to promote highly controlled cell-based regeneration and remineralization of bone. In this study, it was shown for the first time that chitosan solution and its composite with nanostructured bone-like hydroxyapatite (HA) can be mixed with cells and printed successfully. MC3T3-E1 pre-osteoblast cell laden chitosan and chitosan-HA hydrogels, which were printed with the use of an extruder-based bioprinter, were characterized by comparing these hydrogels to alginate and alginate-HA hydrogels. Rheological analysis showed that all groups had viscoelastic properties. It was also shown that under simulated physiological conditions, chitosan and chitosan-HA hydrogels were stable. Also, the viscosity values of the bio-solutions were in an applicable range to be used in 3D bio-printers. Cell viability and proliferation analyses documented that after printing with bio-solutions, cells continued to be viable in all groups. It was observed that cells printed within chitosan-HA composite hydrogel had peak expression levels for early and late stages osteogenic markers. It was concluded that cells within chitosan and chitosan-HA hydrogels had mineralized and differentiated osteogenically after 21 days of culture. It was also discovered that chitosan is superior to alginate, which is the most widely used solution preferred in bioprinting systems, in terms of cell proliferation and differentiation. Thus, applicability and printability of chitosan as a bio-printing solution were clearly demonstrated. Furthermore, it was proven that the presence of bone-like nanostructured HA in alginate and chitosan hydrogels improved cell viability, proliferation and osteogenic differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/aa7b1d | DOI Listing |
Burns
December 2024
Department of Mechanical Engineering, Islamic Azad University, Iran.
Front Bioeng Biotechnol
April 2024
Clinical Medical College, Affiliated Hospital, School of Basic Medical Sciences of Chengdu University, Chengdu, China.
This study aims to develop and evaluate the biocompatibility and osteogenic potential of a novel injectable strontium-doped hydroxyapatite bone-repair material. The properties of strontium-doped hydroxyapatite/chitosan (Sr-HA/CS), hydroxyapatite/chitosan (HA/CS) and calcium phosphate/chitosan (CAP/CS) were assessed following their preparation via physical cross-linking and a one-step simplified method. Petri dishes containing and were inoculated with the material for investigations.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
March 2024
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing - 211 100, China.
Bone transplantation is the second most common transplantation surgery in the world. Therefore, there is an urgent need for artificial bone transplantation to repair bone defects. In bone tissue engineering, hydroxyapatite (HA) plays a major role in bone graft applications.
View Article and Find Full Text PDFBiofabrication
October 2023
Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
There is a constant demand for novel materials/biomedical devices to accelerate the healing of hard-to-heal wounds. Herein, an innovative 3D-printed bioinspired construct was developed as an antibacterial/regenerative scaffold for diabetic wound healing. Hyaluronic/chitosan (HA/CS) ink was used to fabricate a bilayer scaffold comprising a dense plain hydrogel layer topping an antibacterial/regenerative nanofibrous layer obtained by incorporating the hydrogel with polylactic acid nanofibrous microspheres (MS).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2023
Chemistry Department, Faculty of Science, Damanhur University, Damanhur, 22511, Egypt.
With the growing need for high-purity rare-earth elements (REEs), the separation of these REEs has received much attention recently. The objective of this research is to produce chitosan from shrimp waste, then modify it with different functionality, and investigate the adsorption properties of chitosan adsorbents towards La(III) ions. First, from shrimp waste, chitosan (ch) with a significant degree of deacetylation, purity, and solubility was produced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!