Emerging evidence suggests that microRNAs are critical regulators of cancer development and progression. MicroRNA-195 has been reported as a cancer-related microRNA in many human cancers. However, the role of microRNA-195 in pancreatic cancer remains largely unknown. Here, we show that microRNA-195 is downregulated in pancreatic cancer tissues and cell line. Also, we show that overexpression of microRNA-195 inhibits the proliferation and invasion of pancreatic cancer cells, whereas suppression of microRNA-195 promotes proliferation and invasion. We show that microRNA-195 directly targets the fatty acid synthase enzyme and negatively regulates the expression of fatty acid synthase. Also, we show that fatty acid synthase expression is inversely correlated with microRNA-195 expression in pancreatic cancer tissues. Moreover, our results show that microRNA-195 inhibits Wnt signaling in pancreatic cancer cells. By restoring fatty acid synthase expression, we were able to reverse the antitumor effects of microRNA-195 in pancreatic cancer cells. Taken together, our findings show that microRNA-195 inhibits pancreatic cancer cell proliferation and invasion by regulating the fatty acid synthase/Wnt signaling pathway, suggesting a tumor suppressive role for microRNA-195 in the development and progression of pancreatic cancer. Thus, inhibiting fatty acid synthase by microRNA-195 may serve as a novel therapeutic approach for the treatment of pancreatic cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1010428317711324DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
40
fatty acid
28
acid synthase
20
microrna-195 inhibits
16
proliferation invasion
16
cancer cells
16
microrna-195
13
cancer
11
pancreatic
10
inhibits proliferation
8

Similar Publications

DNA replication initiation drives focal mutagenesis and rearrangements in human cancers.

Nat Commun

December 2024

Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.

View Article and Find Full Text PDF

Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low.

View Article and Find Full Text PDF

Here we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.

View Article and Find Full Text PDF

Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.

View Article and Find Full Text PDF

Aldo-keto reductase family 1 member B10 (AKR1B10) is a member of the AKR1B subfamily. It is mainly found in cytoplasm, and it is typically expressed in the stomach and intestines. Given that its expression is low or absent in other tissues, AKR1B10 is a potential diagnostic and therapeutic biomarker for various digestive system diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!