A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Construction of unique two-dimensional MoS-TiO hybrid nanojunctions: MoS as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO to methanol. | LitMetric

Two-dimensional MoS nanosheets were in situ grown on TiO nanosheets to form two-dimensional (2D) hybrid nanojunctions, with which MoS nanosheets compactly contact with TiO to increase the interfacial area. MoS was identified as a promising cost-effective substitute for noble metal cocatalysts such as Pt, Au, and Ag, and shows superior activity and selectivity for reducing CO to CHOH in aqueous solution to these metal cocatalysts under UV-vis light irradiation. The photo-luminescence (PL) spectra and transient time-resolved PL decay measurements reveal that the fast electron transfer from TiO to MoS can minimize charge recombination losses to improve the conversion efficiency of photoreduction. It reveals that Mo-terminated edges of MoS nanosheets possess the metallic character and a high d-electron density, and the Mo cation sites may benefit the stabilization of CHO intermediates via electrostatic attraction to enhance the CHOH formation from the reduction of CO in aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr03238bDOI Listing

Publication Analysis

Top Keywords

mos nanosheets
12
hybrid nanojunctions
8
nanojunctions mos
8
promising cost-effective
8
metal cocatalysts
8
aqueous solution
8
mos
6
construction unique
4
unique two-dimensional
4
two-dimensional mos-tio
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!