Tissue-engineered scaffolds require an effective colonization with cells. Superparamagnetic iron oxide nanoparticles (SPIONs) can enhance cell adhesion to matrices by magnetic cell seeding. We investigated the possibility of improving cell attachment and growth on different alginate-based hydrogels using fibroblasts and endothelial cells (ECs) loaded with SPIONs. Hydrogels containing pure alginate (Alg), alginate dialdehyde crosslinked with gelatin (ADA-G) and Alg blended with G or silk fibroin (SF) were prepared. Endothelial cells and fibroblasts loaded with SPIONs were seeded and grown on hydrogels for up to 7 days, in the presence of magnetic field during the first 24 h. Cell morphology (fluorescent staining) and metabolic activity (WST-8 assay) of magnetically-seeded versus conventionally seeded cells were compared. Magnetic seeding of ECs improved their initial attachment and further growth on Alg/G hydrogel surfaces. However, we did not achieve an efficient and stable colonization of ADA-G films with ECs even with magnetic cell seeding. Fibroblast showed good initial colonization and growth on ADA-G and on Alg/SF. This effect was further significantly enhanced by magnetic cell seeding. On pure Alg, initial attachment and spreading of magnetically-seeded cells was dramatically improved compared to conventionally-seeded cells, but the effect was transient and diminished gradually with the cessation of magnetic force. Our results demonstrate that magnetic seeding improves the strength and uniformity of initial cell attachment to hydrogel surface in cell-specific manner, which may play a decisive role for the outcome in tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2948-2956, 2017.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.36147 | DOI Listing |
J Urol
January 2025
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO.
Purpose: Conventional prostate magnetic resonance imaging has limited accuracy for clinically significant prostate cancer (csPCa). We performed diffusion basis spectrum imaging (DBSI) prior to biopsy and applied artificial intelligence models to these DBSI metrics to predict csPCa.
Materials And Methods: Between February 2020 and March 2024, 241 patients underwent prostate MRI that included conventional and DBSI-specific sequences prior to prostate biopsy.
Langmuir
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.
View Article and Find Full Text PDFJ Occup Health
January 2025
Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States.
Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Ural Federal University, Ekaterinburg, Russia.
This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely the Néel mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!