Calcium electroporation induces tumor eradication, long-lasting immunity and cytokine responses in the CT26 colon cancer mouse model.

Oncoimmunology

Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev Ringvej, Herlev, Denmark.

Published: March 2017

AI Article Synopsis

  • Electroporation enhances cancer treatments by increasing the effectiveness of drugs like bleomycin and calcium, leading to localized cell destruction.
  • Calcium electroporation selectively targets and kills cancer cells through necrosis, which may trigger an immune response due to the release of antigens and danger signals.
  • In studies with mice, both calcium electroporation and electrochemotherapy showed high success rates in tumor remission and indicated potential as immune-boosting cancer therapies, unlike treatments in immunodeficient mice.

Article Abstract

Electroporation is used in cancer treatment because of its ability to increase local cytotoxicity of e.g. bleomycin (electrochemotherapy) and calcium (calcium electroporation). Calcium electroporation is a novel anticancer treatment that selectively kills cancer cells by necrosis, a cell death pathway that stimulates the immune system due to high release of antigens and "danger signals." In this exploratory study, we aimed to investigate whether calcium electroporation could initiate an anticancer immune response similar to electrochemotherapy. To this end, we treated immunocompetent balb/c mice with CT26 colon tumors with calcium electroporation, electrochemotherapy, or ultrasound-based delivery of calcium or bleomycin. High treatment efficiency was observed with 100% complete remission in all four groups (12/12 with complete remission in each treatment group). In addition, none of the surviving mice from these groups formed new tumors when re-challenged with CT26 cancer cells 100-d post treatment, whereas mice challenged with different cancer cells (4T1 breast cancer) all developed tumors. Treatment of immunodeficient mice with calcium electroporation and electrochemotherapy showed no long-lasting tumor response. Calcium electroporation and electrochemotherapy was associated with a release of High Mobility Group Box 1 protein (HMGB1) ( = 0.029) and a significant increase of the overall systemic level of pro-inflammatory cytokines in serum from the treated mice ( < 0.003). These findings indicate that calcium electroporation as well as electrochemotherapy could have a role as immune stimulators in future treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467987PMC
http://dx.doi.org/10.1080/2162402X.2017.1301332DOI Listing

Publication Analysis

Top Keywords

calcium electroporation
32
cancer cells
12
electroporation electrochemotherapy
12
calcium
10
ct26 colon
8
electroporation
8
complete remission
8
cancer
6
treatment
6
electrochemotherapy
6

Similar Publications

Calcium electroporation (CaEP) is an efficient approach for ovarian cancer treatment. It causes cell death by introducing elevated levels of calcium into cells. In this work, the research focused on two types of cell lines: CHO-K1, representing normal ovary cells, and OvBH-1, representing ovarian clear carcinoma cells.

View Article and Find Full Text PDF

Reversible Electroporation for Cancer Therapy.

Br J Radiol

November 2024

Department of Diagnostic and Interventional Radiology, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF.

Reversible electroporation refers to the use of high voltage electrical pulses on tissues to increase cell membrane permeability. It allows targeted delivery of high concentrations of chemotherapeutic agents including cisplatin and bleomycin, a process known as electrochemotherapy (ECT). It can also be used to deliver toxic concentrations of calcium and gene therapies that stimulate an anti-tumour immune response.

View Article and Find Full Text PDF

Enhancing lung cancer growth inhibition with calcium ions: Role of mid- and high-frequency electric field pulses.

Biomed Pharmacother

December 2024

Wroclaw Medical University, Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw, Poland; Medical University Hospital, Wroclaw, Poland. Electronic address:

Calcium electroporation (CaEP) involves the combination of calcium ions with electroporation, which is induced by pulsed electric fields (PEFs). This study explores the application of high-frequency unipolar nanosecond pulsed electric fields (nsPEFs: 8-14 kV/cm, 200 ns, 10 kHz, 100 kHz, 1 MHz repetition frequency pulse bursts, n = 100) and their potential in inhibiting lung cancer cell growth. As a reference, standard microsecond range parametric protocols were used (100 µs x 8 pulses).

View Article and Find Full Text PDF
Article Synopsis
  • - This study examines how complex cellular structures, specifically Jurkat cells with features like the endoplasmic reticulum and mitochondria, respond to external electric pulses by modeling transmembrane potential and electroporation.
  • - Simulations reveal that electroporation requires a stronger electric field for the endoplasmic reticulum compared to the inner mitochondrial membrane, which is more susceptible to poration, and may be linked to increased intracellular calcium levels.
  • - The research also explores how repeated electric pulses and electrode placement enhance membrane poration, while acknowledging that although more complex models could improve accuracy, basic trends in findings are likely to persist.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!