Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: TheSCN5Agene encodes the α subunit of the cardiac voltage-gated sodium channel, Na1.5. The missense mutation, D1275N, has been associated with a range of unusual phenotypes associated with reduced Na1.5 function, including cardiac conduction disease and dilated cardiomyopathy. Curiously, the reported biophysical properties ofSCN5A-D1275N channels vary with experimental system.
Methods and results: First, using a human embryonic kidney (HEK) 293 cell-based heterologous expression system, theSCN5A-D1275N channels showed similar maximum sodium conductance but a significantly depolarizing shift of activation gate (+10 mV) compared to wild type. Second, we generated human-induced pluripotent stem cells (hiPSCs) from a 24-year-old female who carried heterozygousSCN5A-D1275N and analyzed the differentiated cardiomyocytes (CMs). AlthoughSCN5Atranscript levels were equivalent between D1275N and control hiPSC-CMs, both the total amount of Na1.5 and the membrane fractions were reduced approximately half in the D1275N cells, which were rescued by the proteasome inhibitor MG132 treatment. Electrophysiological assays revealed that maximum sodium conductance was reduced to approximately half of that in control hiPSC-CMs in the D1275N cells, and maximum upstroke velocity of action potential was lower in D1275N, which was consistent with the reduced protein level of Na1.5.
Conclusions: This study successfully demonstrated diminished sodium currents resulting from lower Na1.5 protein levels, which is dependent on proteasomal degradation, using a hiPSC-based model forSCN5A-D1275N-related sodium channelopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1253/circj.CJ-17-0064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!