Ifit2 Is a Restriction Factor in Rabies Virus Pathogenicity.

J Virol

Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Published: September 2017

Understanding the interactions between rabies virus (RABV) and individual host cell proteins is critical for the development of targeted therapies. Here we report that interferon-induced protein with tetratricopeptide repeats 2 (Ifit2), an interferon-stimulated gene (ISG) with possible RNA-binding capacity, is an important restriction factor for rabies virus. When Ifit2 was depleted, RABV grew more quickly in mouse neuroblastoma cells This effect was replicated , where Ifit2 knockout mice displayed a dramatically more severe disease phenotype than wild-type mice after intranasal inoculation of RABV. This increase in pathogenicity correlated to an increase in RABV mRNA and live viral load in the brain, as well as to an accelerated spread to brain regions normally affected by this RABV model. These results suggest that Ifit2 exerts its antiviral effect mainly at the level of viral replication, as opposed to functioning as a mechanism that restricts viral entry/egress or transports RABV particles through axons. Rabies is a fatal zoonotic disease with a nearly 100% case fatality rate. Although there are effective vaccines for rabies, this disease still takes the lives of about 50,000 people each year. Victims tend to be children living in regions without comprehensive medical infrastructure who present to health care workers too late for postexposure prophylaxis. The protein discussed in our report, Ifit2, is found to be an important restriction factor for rabies virus, acting directly or indirectly against viral replication. A more nuanced understanding of this interaction may reveal a step of a pathway or site at which the system could be exploited for the development of a targeted therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553164PMC
http://dx.doi.org/10.1128/JVI.00889-17DOI Listing

Publication Analysis

Top Keywords

rabies virus
16
restriction factor
12
factor rabies
12
ifit2 restriction
8
development targeted
8
viral replication
8
ifit2
6
rabies
6
rabv
6
virus
4

Similar Publications

The immunogenicity of rabies vaccines is commonly measured by serological testing, which includes measuring rabies virus-neutralising antibody titre levels in the serum. Apart from humoral immunity, cellular immunity measurements are also helpful in assessing the immunogenicity and efficacy of rabies vaccinations. Recently, there has been an increased emphasis on cellular immunity measurements against rabies in humans and animals.

View Article and Find Full Text PDF

Rabies virus (RABV) is extremely hazardous to both humans and animals, causing up to 100 % death. Accurate and easy-to-use serological evaluation of vaccine potency following immunization is crucial for rabies control. In this study, recombinant RABV glycoprotein (rG) was designed and produced in 293FT cells.

View Article and Find Full Text PDF

Canids act as a crucial intermediary in the transmission of rabies and , serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+G+EgM123+eGFP+L) carrying the gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection.

View Article and Find Full Text PDF

and Rabies-The Parasite, the Virus, or Both?

Microorganisms

January 2025

Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.

is an intracellular protozoan parasite that infects a wide range of vertebrates, including humans. Although cats are the only definitive host, any warm-blooded animal can act as a paratenic host. Throughout the years, this apicomplexan parasite has been studied due to its wide prevalence, zoonotic potential, and host behavioral alterations.

View Article and Find Full Text PDF

Despite increasing emphasis being placed on the inclusion of upstream ecological and social perspectives for zoonotic disease control, few guidelines exist for practitioners and decision makers to work with communities in identifying suitable, locally relevant interventions and integrating these into public health action plans. With an interdisciplinary group of Kenyan stakeholders, we designed and tested a comprehensive framework for the co-design, evaluation, and prioritisation of beneficiary-oriented, ecologically and socially informed interventions for preventing and controlling outbreaks of wildlife-borne zoonoses. Our approach used four globally important wildlife-borne pathogens-Rift Valley fever virus, Congo-Crimean haemorrhagic fever virus, and the causative agents of anthrax and rabies-enabling stakeholders to develop a shared understanding of complex transmission pathways, identify a broad array of measures targeting ecological, biological, and social processes governing outbreaks of these pathogens, and explore trade-offs for specific interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!