Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737446 | PMC |
http://dx.doi.org/10.1093/nar/gkx532 | DOI Listing |
Nat Commun
January 2025
Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
Natural products have a long history of providing probes into protein biosynthesis, with many of these compounds serving as therapeutics. The marine natural product girolline has been described as an inhibitor of protein synthesis. Its precise mechanism of action, however, has remained unknown.
View Article and Find Full Text PDFPurpose: Understanding the molecular mechanisms of adaptive regulation in the tumor microenvironment is crucial for precision therapy in hepatocellular carcinoma (HCC). We hypothesized that cargo proteins carried by extracellular vesicles (EVs) released in a hypoxic microenvironment might promote HCC progression by remodeling tumor-associated macrophages (TAMs).
Methods: EV protein analysis by label-free proteomics mass spectrometry of HCC cell lines of different tumor grades was performed.
Biomolecules
December 2024
Department of Sciences, University of Roma Tre, 00146 Rome, Italy.
The polyamines putrescine, spermidine, and spermine are polycations ubiquitously present in cells, where they exert pleiotropic functions in cellular mechanisms like proliferation, protein synthesis (through the hypusination of the transcription factor EIF5a), redox balance, autophagy, and different forms of cell death [...
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology and Laboratory Medicine, Collage of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
Deoxyhypusine synthase (DHPS) is an enzyme encoded by the DHPS gene, with high expression in various cancers, including ovarian cancer (OC). DHPS regulates the translation initiation factor EIF5A, and EIF5A2 knockout inhibits OC tumor growth and metastasis by blocking the epithelial-to-mesenchymal transition (EMT) and the TGFβ pathway. In this study, we show that DHPS is amplified in OC patients, and its elevated expression correlates with poor survival.
View Article and Find Full Text PDFNature
January 2025
Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium.
Lung metastases occur in up to 54% of patients with metastatic tumours. Contributing factors to this high frequency include the physical properties of the pulmonary system and a less oxidative environment that may favour the survival of cancer cells. Moreover, secreted factors from primary tumours alter immune cells and the extracellular matrix of the lung, creating a permissive pre-metastatic environment primed for the arriving cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!