Bispecific antibody targeting of two different antigens is promising, but when fragment-based antibodies are used, homogeneous production is difficult. To overcome this difficulty, we developed a method using the SpyTag/SpyCatcher system in which a covalent bond is formed between the two polypeptides. Using this method, we constructed a bispecific antibody that simultaneously interacted with two different epitopes of roundabout homologue 1 (ROBO1), a membrane protein associated with cancer progression. A bispecific tetravalent antibody with an additional functional moiety was also constructed by using a dimeric biotin-binding protein. An interaction analysis of ROBO1-expressing cells and the recombinant antigen demonstrated the improved binding ability of the bispecific antibodies through spontaneous binding of the two antibody fragments to their respective epitopes. In addition, multivalency delayed dissociation, which is advantageous in therapy and diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvx023 | DOI Listing |
Nat Rev Rheumatol
January 2025
Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
B cell depletion with rituximab, a chimeric monoclonal antibody that selectively targets B cells by binding CD20, has been used off label in severe and resistant systemic lupus erythematosus (SLE) for over two decades. Several biological mechanisms limit the efficacy of rituximab, including immunological reactions towards the chimeric molecule, increased numbers of residual B cells, including plasmablasts and plasma cells, and a post-treatment surge in B cell-activating factor (BAFF) levels. Consequently, rituximab induces remission in only a proportion of patients, and safety issues limit its use.
View Article and Find Full Text PDFMol Ther Oncol
March 2025
Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany.
In this work, we report the discovery and engineering of allosteric variable domains of the heavy chain (VHHs) derived from camelid immunization targeting NKp30, an activating receptor on natural killer (NK) cells. The aim was to enhance NK cell-mediated killing capacities by identifying VHHs that do not compete with the natural ligand of NKp30:B7-H6, thereby maximizing the recognition of B7-H6 tumor cells. By relying on the DuoBody technology, bispecific therapeutic antibodies were engineered, creating a panel of bispecific antibodies against NKp30xEGFR (cetuximab moiety) or NKp30xHER2 (trastuzumab moiety), called natural killer cell engagers (NKCEs).
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
Multimerization is a powerful engineering strategy for enhancing protein structural stability, diversity and functional performance. Typical methods for clustering proteins include tandem linking, fusion to self-assembly domains and cross-linking. Here we present a novel approach that leverages the Peptidisc membrane mimetic to stabilize hydrophobic-driven protein clusters.
View Article and Find Full Text PDFClin Lymphoma Myeloma Leuk
December 2024
Universidade Federal do Rio de Janeiro -UFRJ, Rio de Janeiro, Brazil; Instituto Americas de Ensino, Pesquisa e Inovação, Rio de Janeiro, Brazil.
Multiple myeloma treatment has evolved rapidly with the development of novel targeted therapies. The paper outlines multiple myeloma epidemiology, current treatments, and recent advances, highlighting the role of bispecific antibodies. Brazilian authorities have approved 3 bispecific antibodies (teclistamab, elranatamab, and talquetamab) for relapsed/refractory multiple myeloma patients who have received at least three prior therapies.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China. Electronic address:
There is a phenomenon of combined contamination of fungal toxins, of which aflatoxin B (AFB) is the most toxic, and deoxynivalenol (DON) contamination is common. The use of antigens for double or multiple testing of mycotoxins is easy to cause environmental pollution, and surrogate antigens have become necessary. The small molecule and susceptibility to genetic modification of nanobodies can be used to develop alternative antigens for mycotoxins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!