Response of antimicrobial nitrofurazone-degrading biocathode communities to different cathode potentials.

Bioresour Technol

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Published: October 2017

Bioelectrodegradation of various organic pollutants has been extensively studied. However, whether different cathode potentials could alter the antimicrobial-degrading biocathode community structure and composition remain poorly understood. Here, the microbial community structure and composition of the nitrofurans nitrofurazone (NFZ) degrading biocathode in response to different cathode potentials (-0.45±0.01, -0.65±0.01 and -0.86±0.05V vs standard hydrogen electrode, with applied cell voltages of 0.2, 0.5 and 0.8V, respectively) were investigated. The bioelectrodegradation efficiency and degree of NFZ were highly related to different cathode potentials. The 0.2 and 0.5V performed biocathode communities were similar but significantly differed from those of the 0.8V and open circuit biofilms. The bacteria possessing functions of nitroaromatics reduction and electrons transfer (e.g. Klebsiella, Enterococcus, Citrobacter and Desulfovibrio) were selectively enriched in different biocathode communities. This study offers new insights into the ecological response of antimicrobial-degrading biocathode communities to different cathode potentials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.06.056DOI Listing

Publication Analysis

Top Keywords

cathode potentials
20
biocathode communities
16
communities cathode
8
antimicrobial-degrading biocathode
8
community structure
8
structure composition
8
biocathode
6
cathode
5
potentials
5
response antimicrobial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!