Effects of HPMC substituent pattern on water up-take, polymer and drug release: An experimental and modelling study.

Int J Pharm

SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology, Göteborg, Sweden; Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden. Electronic address:

Published: August 2017

The purpose of this study was to investigate the hydration behavior of two matrix formulations containing the cellulose derivative hydroxypropyl methylcellulose (HPMC). The two HPMC batches investigated had different substitution pattern along the backbone; the first one is referred to as heterogeneous and the second as homogenous. The release of both the drug molecule theophylline and the polymer was determined. Additionally, the water concentrations at different positions in the swollen gel layers were determined by Magnetic Resonance Imaging. The experimental data was compared to predicted values obtained by the extension of a mechanistic Fickian based model. The hydration of tablets containing the more homogenous HPMC batch showed a gradual water concentration gradient in the gel layer and could be well predicted. The hydration process for the more heterogeneous batch showed a very abrupt step change in the water concentration in the gel layer and could not be well predicted. Based on the comparison between the experimental and predicted data this study suggests, for the first time, that formulations with HPMC of different heterogeneities form gels in different ways. The homogeneous HPMC batch exhibits a water sorption behavior ascribable to a Ficḱs law for the diffusion process whereas the more heterogeneous HPMC batches does not. This conclusion is important in the future development of simulation models and in the understanding of drug release mechanism from hydrophilic matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.06.064DOI Listing

Publication Analysis

Top Keywords

drug release
8
hpmc batches
8
hpmc batch
8
water concentration
8
gel layer
8
layer well
8
well predicted
8
process heterogeneous
8
hpmc
6
water
5

Similar Publications

Importance: Cannabis use has increased globally, but its effects on brain function are not fully known, highlighting the need to better determine recent and long-term brain activation outcomes of cannabis use.

Objective: To examine the association of lifetime history of heavy cannabis use and recent cannabis use with brain activation across a range of brain functions in a large sample of young adults in the US.

Design, Setting, And Participants: This cross-sectional study used data (2017 release) from the Human Connectome Project (collected between August 2012 and 2015).

View Article and Find Full Text PDF

Fabrication of Hypoxia-Mimicking Supramolecular Hydrogels for Cartilage Repair.

ACS Appl Bio Mater

January 2025

Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.

Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.

View Article and Find Full Text PDF

Objective: The fabrication of furosemide (FSM) with enhanced oral bioavailability and encapsulation was achieved using a nanostructured lipid carriers (NLCs) drug delivery system.: The uniform drug distribution is a barrier due to its low dose. The lipid-based delivery system was selected based on its poor solubility and permeability, limiting its poor partitioning and solubility in water-based polymeric delivery systems.

View Article and Find Full Text PDF

This study aimed to design a novel liposome containing GA modified phosphatidylcholine lipid (GA-PC Lip) and determine its susceptibility to tumor over-expressed secretory phospholipase A (sPLA) and its anti-cancer effect compared to conventional liposomes (Convention Lip). The liposomes were characterized for size, drug loading, encapsulation efficiency, and stability. A 6-CF release assay was conducted to assess the sensitivity of the liposomes to the tumor-overexpressed secretory phospholipase A (sPLA).

View Article and Find Full Text PDF

Manufacturing of Liposomes Using a Stainless-Steel Microfluidic Device: An Investigation into Design of Experiments.

Langmuir

January 2025

Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran.

Liposomes are highly beneficial nanocarrier systems due to their biocompatibility, low toxicity, and exceptional inclusiveness, which lead to improved drug bioavailability. For biological applications, accurate control over these nanoparticles' mean size and size distribution is essential. Micromixers facilitate the continuous production of liposomes, enhancing the precision of size regulation and reproducibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!