Superelastic Pseudocapacitors from Freestanding MnO-Decorated Graphene-Coated Carbon Nanotube Aerogels.

ACS Appl Mater Interfaces

Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213-3815, United States.

Published: July 2017

In recent years, the demand for emerging electronic devices has driven efforts to develop electrochemical capacitors with high power and energy densities that can preserve capacitance under and after recovery from mechanical deformation. We have developed superelastic pseudocapacitors using ∼1.5 mm thick graphene-coated single-walled carbon nanotube (SWCNT) aerogels decorated with manganese oxide (MnO) as freestanding electrodes that retain high volumetric capacitance and electrochemical stability before, under, and after recovery from 50% compression. Graphene-coated SWCNT aerogels are superelastic and fatigue-resistant with high specific surface area and electrical conductivity. Electrodeposition of MnO onto these aerogels does not alter their superelasticity, with full shape recovery even after 10 000 compression-release cycles to 50% strain. Total (utilized) gravimetric capacitances of these aerogels before compression are similar to those under and after recovery from 50% compression over a wide range of scan rates with capacitances reaching 98 (468), 106 (522), and 128 F/g (626 F/g) at a scan rate of 2 mV/s, respectively. These gravimetric capacitances are preserved even after 10 000 compression-release cycles to 50% strain. Further, 50% compression of these aerogels increases the volumetric capacitance from 1.5 to 3.3 F/cm. Before compression, the lifetime performances of these aerogels remain largely stable, with capacitance degrading by only ∼14% over the first 2000 charge-discharge cycles and remains constant for further 8000 cycles. Under 50% compression, capacitance displays a similar trend over 10 000 charge-discharge cycles. After recovery from 10 000 compression-release cycles to 50% strain, the aerogels show slightly greater capacitance loss of ∼28% over the first 2000 charge-discharge cycles and an additional ∼10% loss over the subsequent 8000 charge-discharge cycles. Finally, substantially higher gravimetric capacitance is achieved through greater MnO deposition, facilitated by the large porosity of these aerogels, albeit at a loss of capacitance retention upon compression. These capacitors display the feasibility of coating graphene-coated SWCNT aerogels with various pseudocapacitive materials to create superelastic energy-storage devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b06210DOI Listing

Publication Analysis

Top Keywords

50% compression
16
cycles 50%
16
charge-discharge cycles
16
swcnt aerogels
12
10 000 compression-release
12
compression-release cycles
12
50% strain
12
aerogels
10
superelastic pseudocapacitors
8
carbon nanotube
8

Similar Publications

Coal gangue (CG) is an industrial solid waste produced by coal mining and separation that is considered to have a significant effect on the soil or water environment when exposed to the air, exacerbating ecological pollution. The comprehensive utilization of CG has always been a difficult problem due to the complex mineralogical characteristics. Producing concrete aggregates with CG is an effective strategy for utilising CG resources synthetically.

View Article and Find Full Text PDF

Background: Identifying spontaneous circulation during cardiopulmonary resuscitation (CPR) is challenging. Current methods, which involve intermittent and time-consuming pulse checks, necessitate pauses in chest compressions. This issue is problematic in both in-hospital cardiac arrest and out-of-hospital cardiac arrest situations, where resources for identifying circulation during CPR may be limited.

View Article and Find Full Text PDF

Unlabelled: The article is devoted to the problem of the rehabilitation stage of cochlear implantation in patients with inner ear abnormalities. It provides a detailed analysis of the audiological characteristics of such patients and draws conclusions about approaches to interpreting diagnostic data and speech processors fitting.

Material And Methods: The track records of 80 patients with abnormalities of the inner ear development were retrospectively studied, of which 10 had abnormal structure of the auditory nerve.

View Article and Find Full Text PDF

Effects of Nanosilica on the Properties of Ultrafine Cement-Fly Ash Composite Cement Materials.

Nanomaterials (Basel)

December 2024

School of Civil Engineering and Architecture, Henan University, Kaifeng 475000, China.

The increasing incidence of structural failures, such as cracks and collapses, in rock masses within mines, tunnels, and other civil engineering environments has attracted considerable attention among scholars in recent years. Grouting serves as a principal solution to these issues. The Renlou Coal Mine in the Anhui Province is used as a case study to evaluate the effectiveness of nanosilica (NS) as an additive in ultrafine cement (UC), introducing a novel grouting material for practical applications.

View Article and Find Full Text PDF

Mechanical function of the annulus fibrosus is preserved following quasi-static compression resulting in endplate fracture.

Clin Biomech (Bristol)

December 2024

Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada. Electronic address:

Background: Vertebral fractures in young populations are associated with intervertebral disc disorders later in life. However, damage to the annulus fibrosus has been observed in rapidly loaded spines even without the subsequent occurrence of a fracture. Therefore, it may not be the fracture event that compromises the disc, but rather the manner in which the disc is loaded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!