Oral retinoids and tetracyclines have a major role in acne treatment. Here, we report for the first time the effect of isotretinoin and lymecycline therapy on the skin microbiota in cheek, back and armpit swab samples of acne vulgaris patients using 16S ribosomal RNA (16S rRNA) gene amplicon sequencing. Propionibacterium acnes was the most common in sebaceous areas of healthy and untreated acne skin and more abundant in back than cheek samples. Five taxa, including a Streptococcus taxon, differed significantly between the cheek samples of healthy controls and acne patients, and acne severity was positively correlated with the abundance of Propionibacterium. Both treatments reduced clinical acne grades and the abundance of Propionibacterium, while the abundance of several other taxa was significantly higher in treated cheek samples compared with untreated ones. Less variation was observed in back samples and none in armpit samples. There were no differences in alpha diversity between control and acne patients in any of the sampled skin areas, but the diversity of the microbiota on the cheek and the back was significantly increased after acne treatments. This study provides insight into the skin microbiota in acne and how it is modulated by systemic acne treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.13397DOI Listing

Publication Analysis

Top Keywords

skin microbiota
12
cheek samples
12
acne
11
isotretinoin lymecycline
8
microbiota acne
8
acne treatment
8
microbiota cheek
8
acne patients
8
abundance propionibacterium
8
samples
6

Similar Publications

Epigenetic mechanisms are central to the regulation of all biological processes. This manuscript reviews the current understanding of diverse epigenetic modifications and their role in the establishment and maintenance of normal skin functions. In healthy skin, these mechanisms allow for the precise control of gene expression, facilitating the dynamic balance between cell proliferation and differentiation necessary for effective barrier function.

View Article and Find Full Text PDF

Radiation-induced skin toxicity, resulting from ionizing or nonionizing radiation, is a common skin disorder. However, the underlying relationship between skin microbiota and radiation-induced skin toxicity remains largely unexplored. Herein, we uncover the microbiota-skin interaction based on a genome-wide association study (GWAS) featuring 150 skin microbiota and three types of skin microenvironment.

View Article and Find Full Text PDF

Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis.

View Article and Find Full Text PDF

Oral diseases, particularly dental caries and periodontal disease, pose significant global health challenges. The imbalance of the oral microbiota plays a key role in the occurrence of these diseases, prompting researchers to seek new strategies to restore oral ecological balance. is a Gram-positive rod-shaped bacterium that exists in various body parts of humans, including the gastrointestinal tract, urinary tract, skin, and so on.

View Article and Find Full Text PDF

Characteristics and Differences in the Antler Velvet Microbiota During Regeneration.

Microorganisms

December 2024

Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.

The skin surface has a complex and dynamic ecosystem inhabited by a diverse microbiota. The wound formed by antler velvet shedding can naturally achieve regenerative restoration, but the changes in microbial composition that occur during antler velvet regeneration are largely unknown. In this study, we analyzed the antler velvet microbiota of sika deer at 15 days (Half) and 30 days (Full) post-pedicle casting using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!