In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479544PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179317PLOS

Publication Analysis

Top Keywords

gt1-7 cells
24
scrapie prions
16
l-type prions
12
propagation mouse-passaged
8
mouse-passaged scrapie
8
prions
8
long incubation
8
incubation period
8
mixed prion
8
prion population
8

Similar Publications

Male-typical behaviors such as aggression and mating, which reflect sexual libido in male mice, are regulated by the hypothalamus, a crucial part of the nervous system. Previous studies have demonstrated that microRNAs (miRNAs), especially , play a vital role in reproduction and the neural control of behaviors. However, it remains unclear whether affects reproduction through the hypothalamus-mediated regulation of male-typical behaviors.

View Article and Find Full Text PDF

Background: The insulin-like growth factor (IGF) system plays a vital role in regulating gonadotropin-releasing hormone (GnRH), whether the IGF2 can act on the GnRH neurons during the pubertal period is unclear.

Methods: Central precocious puberty (CPP) rats were induced by danazol, and when the rats met the first diestrus, they were euthanized and tissues were collected. GT1-7 cells were cultured and treated with 0, 1, 10 ng/mL IGF2 for 4 hours and the changes in GnRH were measured.

View Article and Find Full Text PDF

Scope: Luteal phase deficiency (LPD) is the main cause of infertility without an effective cure. Quercetin (QUE) is a bioactive flavonoid with antioxidant properties, while its role in treating LPD remains unclear. This study aims to investigate the therapeutic effects of QUE on infertility and menstrual disorders induced by LPD, thus further exploring the underlying mechanism.

View Article and Find Full Text PDF

NAGK regulates the onset of puberty in female mice.

Theriogenology

January 2025

Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China. Electronic address:

This study examines the role of N-acetylglucosamine kinase (NAGK) in initiating puberty in female mice. We employed real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunofluorescence to measure NAGK expression in the hypothalamic-pituitary-ovarian axis across various developmental stages: infant, prepuberty, puberty, and adult. We further investigated the impact of Nagk gene knockdown on puberty in female mice.

View Article and Find Full Text PDF

Alpha-synuclein expression in GnRH neurons of young and old bovine hypothalami.

Reprod Fertil Dev

September 2024

Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan.

Article Synopsis
  • The study investigates how the protein α-synuclein, known for its involvement in age-related diseases, differs in expression between young and old cows, specifically in neurons that release gonadotropin-releasing hormone (GnRH).* -
  • Researchers used various methods, including mRNA analysis and confocal microscopy, to compare α-synuclein levels in different brain areas, finding significant differences between young and aged cows.* -
  • The results suggest that α-synuclein in GnRH neurons may be linked to age-related infertility, highlighting its potential importance in understanding reproductive challenges in older animals.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!