Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This Article describes the generation and study of surfaces modified with custom-crafted poly(l-lysine) (PLL) coatings for use in the loading and delivery of single-stranded DNA (ssDNA). The experimental strategy utilizes bidentate dithiol adsorbates to generate stably bound azide-terminated self-assembled monolayers (SAMs) on gold possessing an oligo(ethylene glycol) (OEG) spacer. Consequent to the molecular assembly on gold, the azide termini are covalently attached to a maleimide linker moiety via a copper-catalyzed azide-alkyne "click" reaction. Functionalization with maleimide provides a platform for the subsequent attachment of cysteine-terminated poly(l-lysine) (PLL), thus forming a suitable surface for the loading of ssDNA via electrostatic interactions. In efforts to maximize DNA loading, we generate SAMs containing mixtures of short and long PLL segments and explore the DNA-loading capability of the various PLL SAMs. We then use thermal increases to trigger the release of the ssDNA from the surface. By examining the loading and release of ssDNA using these new two-dimensional systems, we gain preliminary insight into the potential efficacy of this approach when using three-dimensional gold nanostructure systems in future gene-delivery and biosensing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b05024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!