Redox-Sensitive Nanoscale Coordination Polymers for Drug Delivery and Cancer Theranostics.

ACS Appl Mater Interfaces

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, China.

Published: July 2017

Nanoscale coordination polymers (NCPs), with inherent biodegradability, chemical diversities, and porous structures, are a promising class of nanomaterials in the nanomedicine field. Herein, a unique type of redox-sensitive NCPs is constructed with manganese ions (Mn) and dithiodiglycolic acid as the disulfide (SS)-containing organic bridging ligand. The obtained Mn-SS NCPs with a mesoporous structure could be efficiently loaded with doxorubicin (DOX), a chemotherapeutics. The yielded Mn-SS/DOX nanoparticles are coated with a layer of polydopamine (PDA) and then modified by poly(ethylene glycol) (PEG). In such a Mn-SS/DOX@PDA-PEG NCP structure, the disulfide linkage (SS) within dithiodiglycolic acid can be cleaved in the presence of glutathione (GSH), leading to efficient redox-responsive dissociation of NCPs and the subsequent drug release. Meanwhile, Mn in Mn-SS/DOX@PDA-PEG NCPs would offer a strong T1 contrast in magnetic resonance (MR) imaging, Upon intravenous injection, these Mn-SS/DOX@PDA-PEG NCPs show efficient tumor homing, as revealed by MR imaging, and offer an obviously improved in vivo therapeutic outcome compared to that achieved with free DOX.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b07535DOI Listing

Publication Analysis

Top Keywords

nanoscale coordination
8
coordination polymers
8
dithiodiglycolic acid
8
mn-ss/dox@pda-peg ncps
8
ncps
6
redox-sensitive nanoscale
4
polymers drug
4
drug delivery
4
delivery cancer
4
cancer theranostics
4

Similar Publications

Allosteric regulation is a widespread strategy employed by several proteins to transduce chemical signals and perform biological functions. Metal sensor proteins are exemplary in this respect, e.g.

View Article and Find Full Text PDF

Energetic MOF-derived FeC nanoparticles encased in N,S-codoped mesoporous pod-like carbon nanotubes for efficient oxygen reduction reaction.

Nanoscale

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.

The rational design of advanced oxygen reduction reaction (ORR) catalysts is essential to improve the performance of energy conversion devices. However, it remains a huge challenge to construct hierarchical micro-/meso-/macroporous nanostructures, especially mesoporous transport channels in catalysts, to enhance catalytic capability. Herein, motivated by the characteristics of energetic metal-organic frameworks (EMOFs) that produce an abundance of gases during high-temperature pyrolysis, we prepared a unique tetrazine-based EMOF-derived electrocatalyst (denoted as FeC@NSC-900) consisting of highly dispersed FeC nanoparticles and N,S-codoped mesoporous carbon nanotubes.

View Article and Find Full Text PDF

At presynaptic active zones (AZs), scaffold proteins are critical for coordinating synaptic vesicle release and forming essential nanoarchitectures. However, regulatory principles steering AZ scaffold assembly, function, and plasticity remain insufficiently understood. We here identify an additional Drosophila AZ protein, "Blobby", essential for proper AZ nano-organization.

View Article and Find Full Text PDF

Matchbox Janus membrane fog collector with highly efficient directional transport.

Nanoscale Horiz

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.

Coordinating the droplet capture, transport, and shedding processes during fog collection to achieve efficient fog collection is a major challenge. In this study, a copper mesh with different wettability was prepared by chemical etching and thiol modification. The Cu(OH) needle structure on the surface of the samples was characterized by FE-SEM and EDS tests, and the surface of the samples was chemically analyzed by infrared and XPS analyses.

View Article and Find Full Text PDF

Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!