During bone remodelling, osteoclasts induce chemotaxis of osteoblasts and yet maintain spatial segregation. We show that osteoclasts express the repulsive guidance factor Semaphorin 4D and induce contact inhibition of locomotion (CIL) in osteoblasts through its receptor Plexin-B1. To examine causality and elucidate how localized Plexin-B1 stimulation may spatiotemporally coordinate its downstream targets in guiding cell migration, we develop an optogenetic tool for Plexin-B1 designated optoPlexin. Precise optoPlexin activation at the leading edge of migrating osteoblasts readily induces local retraction and, unexpectedly, distal protrusions to steer cells away. These morphological changes are accompanied by reorganization of Myosin II, PIP, adhesion and active Cdc42. We attribute the resultant repolarization to RhoA/ROCK-mediated redistribution of β-Pix, which activates Cdc42 and promotes protrusion. Thus, our data demonstrate a causal role of Plexin-B1 for CIL in osteoblasts and reveals a previously unknown effect of Semaphorin signalling on spatial distribution of an activator of cell migration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482063 | PMC |
http://dx.doi.org/10.1038/ncomms15831 | DOI Listing |
J Dent Res
September 2018
4 Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA.
Progression of inflammatory osteolytic diseases, including rheumatoid arthritis and periodontitis, is characterized by increased production of proinflammatory mediators and matrix-degrading enzymes by macrophages and increased osteoclastic activity. Phenotypic changes in macrophages are central to the healing process in virtually all tissues. Using a murine model of periodontitis, we assessed the timing of macrophage phenotypic changes and the impact of proresolving activation during inflammatory osteolysis and healing.
View Article and Find Full Text PDFNat Commun
June 2017
Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, Connecticut 06030, USA.
During bone remodelling, osteoclasts induce chemotaxis of osteoblasts and yet maintain spatial segregation. We show that osteoclasts express the repulsive guidance factor Semaphorin 4D and induce contact inhibition of locomotion (CIL) in osteoblasts through its receptor Plexin-B1. To examine causality and elucidate how localized Plexin-B1 stimulation may spatiotemporally coordinate its downstream targets in guiding cell migration, we develop an optogenetic tool for Plexin-B1 designated optoPlexin.
View Article and Find Full Text PDFDev Biol
July 2016
Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.
The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration.
View Article and Find Full Text PDFClin Exp Rheumatol
April 2015
Division of Rheumatology, Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea.
Objectives: 18F-fluoride uptake represents active osteoblastic bone synthesis. We assessed bone synthetic activity in inflammatory lesions and syndesmophytes in patients with ankylosing spondylitis (AS) using 18F-fluoride positron emission tomography-magnetic resonance imaging (PET-MRI, Philips Healthcare, Cleveland, OH, USA) and x-ray.
Methods: All images of 12 AS patients were recorded with the presence or absence of increased 18F-fluoride uptake lesions on PET, acute (type A) or advanced (type B) corner inflammatory lesions (CILs) on MRI, syndesmophytes on x-ray at the anterior vertebral corners.
PLoS One
August 2014
Zoological Institute, Cell- and Developmental Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Collective cell migration is an essential feature both in embryonic development and cancer progression. The molecular mechanisms of these coordinated directional cell movements still need to be elucidated. The migration of cranial neural crest (CNC) cells during embryogenesis is an excellent model for collective cell migration in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!