Effect of salt loading on baroreflex sensitivity in reduced renal mass hypertension.

Clin Exp Hypertens

a Department of Physiology, Faculty of Medicine , University of Çukurova, Balcalı , Adana , Turkey.

Published: April 2018

Background: High dietary salt, as well as renal mass reduction, is known to decrease baroreflex sensitivity in rats. However, the effect of high salt intake on baroreflex sensitivity is unknown in reduced renal mass (RRM) hypertension; therefore, the aim of this study was to investigate the effects of salt loading on arterial baroreflex sensitivity and mean arterial pressure (MAP) in RRM hypertension.

Methods: Both RRM and sham-operated control (SO) rats were loaded with 0.25 or 0.5% NaCl for five weeks. Plasma Na, K, and creatinine levels were measured, and baroreflex sensitivity was evaluated before and after β blockade. In addition, cardiac vagal tone and intrinsic heart rate (IHR) were measured.

Results: RRM decreased full baroreflex sensitivity of the tachycardic response under 0.5% NaCl loading and the parasympathetic bradycardic response under 0% NaCl loading. The NaCl loading did not affect the severity of RRM hypertension. Cardiac vagal tone and IHR decreased in RRM rats versus SO controls under all NaCl loading conditions. RRM decreased plasma K under 0% NaCl loading and increased plasma Na under 0.5% NaCl loading. High (0.5%) NaCl loading decreased IHR and increased plasma creatinine and left ventricular weight in RRM rats.

Conclusions: RRM in combination with 0.5% NaCl loading led to a decrease in the sensitivity of full baroreflex and of the parasympathetic component of baroreflex. Changes in plasma Na and K levels, due to NaCl loading, may have contributed to the decrease in baroreflex sensitivities and IHR but had no effect upon MAP in RRM rats.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10641963.2017.1299748DOI Listing

Publication Analysis

Top Keywords

nacl loading
36
baroreflex sensitivity
24
05% nacl
20
renal mass
12
rrm
10
loading
10
nacl
10
baroreflex
9
salt loading
8
reduced renal
8

Similar Publications

Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).

View Article and Find Full Text PDF

Mechanical stress is one of the factors influencing the initiation of pitting corrosion and deterioration of the protective properties of the passive layer on stainless steel. The tests carried out on AISI 304L stainless steel showed that, in the 3.5% NaCl environment for samples loaded in the elastic and plastic range, no pitting corrosion initiation was observed.

View Article and Find Full Text PDF

Eversa Transform (ETL) was immobilized on octyl agarose beads at two different enzymes loadings (1 mg/g and 15 mg/g) under 18 different conditions, including different pH values, buffers, additives (different solvents, Ca, NaCl). Their activity was analyzed at pH 5 and 7 with p-nitrophenyl butyrate and at pH 5 with triacetin, determining also its stability at pH 5 and 7 (in different media). Ca stabilized ETL biocatalysts while phosphate destabilized them.

View Article and Find Full Text PDF

Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction.

J Colloid Interface Sci

January 2025

Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:

Transition metal-nitrogen-carbon (MNC) based on 3d metal atoms as promising non-precious metal catalysts have been extensively exploited for oxygen reduction reaction (ORR), but MNC with 4f rare earth metals have been largely ignored, most likely due to their large atomic radii that are difficult to coordinate with N dopants using conventional precursors. Herein, atomically dispersed dysprosium-nitrogen-carbon (DyNC) nanosheets were developed via the pyrolysis of anitrogen-containing chelate compound of 2, 4, 6-Tri (2-pyridyl) 1, 3, 5-triazine (TPTZ) ligand with Dy under the assistance of molten NaCl. The as-synthesized DyNC features specific moieties of single Dy atom coordinated by N and O as active sites for ORR, displaying excellent performance.

View Article and Find Full Text PDF

: Increased sodium chloride (NaCl) intake led to leukocyte activation and impaired vasodilatation via increased oxidative stress in human/animal models. Interestingly, subpressor doses of angiotensin II (AngII) restored endothelium-dependent vascular reactivity, which was impaired in a high-salt (HS) diet in animal models. Therefore, the present study aimed to assess the effects of AngII exposure following high salt (HS) loading on endothelial cells' (ECs') viability, activation, and reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!