This paper deals with the methylene blue molecule (MB) removal from synthetic and real textile wastewaters by alkali-treated orange tree sawdust (ATOS) under different dynamic conditions. Experimental results showed that MB removal efficiencies by ATOS increased when increasing initial dye concentrations and bed depths but decreased with the increase of the applied flow rates with a maximum adsorption capacity of about 110 mg g. Moreover, various empirical models were applied to predict the experimental breakthrough curves (BTCs) and to determine the characteristic adsorption parameters. The applied models successfully fitted data in the following order: Thomas ([Formula: see text] = 0.969), dose response ([Formula: see text] = 0.949), and Clark ([Formula: see text] = 0.874). ATOS was also found to efficiently remove dyes and other mineral pollutants such as chlorides, nitrates, and phosphates from real wastewaters. MB removal by ATOS involved not only cationic exchange but also complexation with acidic and basic functional groups. Moreover, important MB desorption yields from ATOS (more than 93%) were obtained when using saline solutions. All these results confirmed that NaOH-treated orange tree sawdust can be considered as a promising material for the removal of cationic dyes from industrial wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-9388-4DOI Listing

Publication Analysis

Top Keywords

dynamic conditions
8
orange tree
8
tree sawdust
8
removal
5
atos
5
alkaline-treated sawdust
4
sawdust effective
4
effective material
4
material cationic
4
cationic dye
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!