Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making.

Front Neurosci

ASU-SFI Center for Biosocial Complex Systems, Arizona State UniversityTempe, AZ, United States.

Published: June 2017

A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a "coding duality" in which there are accumulation and consensus formation processes distinguished by different timescales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459926PMC
http://dx.doi.org/10.3389/fnins.2017.00313DOI Listing

Publication Analysis

Top Keywords

collective computation
8
neural spiking
8
spiking behavior
8
consensus formation
8
phase
7
dual coding
4
coding theory
4
theory explains
4
explains biphasic
4
biphasic collective
4

Similar Publications

Graph-Based Analysis for the Characterization of Corrugated Board Compression.

Materials (Basel)

December 2024

Chair of Paper Technology and Mechanical Process Engineering, Technical University of Darmstadt, 64289 Darmstadt, Germany.

This paper proposes a novel approach to represent the geometry of the corrugated board profile during compression using graphs. Graphs are lighter than images, and the computational time of compression analysis is then significantly reduced compared to using the original image data for the same analysis. The main goal of using such graphs is to gain more knowledge about the mechanical behavior of corrugated boards under compression compared to the current load-deformation curve approach.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by alpha-synuclein aggregation into Lewy bodies in the neurons. Cerebrospinal fluid (CSF) is considered the most suited source for investigating PD pathogenesis and identifying biomarkers. While microRNA (miRNA) profiling can aid in the investigation of post-transcriptional regulation in neurodegenerative diseases, information on miRNAs in the CSF of patients with PD remains limited.

View Article and Find Full Text PDF

We study the emergence of agency from scratch by using Large Language Model (LLM)-based agents. In previous studies of LLM-based agents, each agent's characteristics, including personality and memory, have traditionally been predefined. We focused on how individuality, such as behavior, personality, and memory, can be differentiated from an undifferentiated state.

View Article and Find Full Text PDF

Metastable Oscillatory Modes as a Signature of Entropy Management in the Brain.

Entropy (Basel)

December 2024

Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK.

Entropy management, central to the Free Energy Principle, requires a process that temporarily shifts brain activity toward states of lower or higher entropy. Metastable synchronization is a process by which a system achieves entropy fluctuations by intermittently transitioning between states of collective order and disorder. Previous work has shown that collective oscillations, similar to those recorded from the brain, emerge spontaneously from weakly stable synchronization in critically coupled oscillator systems.

View Article and Find Full Text PDF

Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits.

Curr Biol

December 2024

Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:

Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions. It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes. In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!