Burkitt lymphoma/leukemia cells carry t(8;14)(q24;q32) chromosomal translocation encoding IGH/MYC, which results in the constitutive expression of the MYC oncogene. Here, it is demonstrated that untreated and cytarabine (AraC)-treated IGH/MYC-positive Burkitt lymphoma cells accumulate a high number of potentially lethal DNA double-strand breaks (DSB) and display low levels of the BRCA2 tumor suppressor protein, which is a key element of homologous recombination (HR)-mediated DSB repair. BRCA2 deficiency in IGH/MYC-positive cells was associated with diminished HR activity and hypersensitivity to PARP1 inhibitors (olaparib, talazoparib) used alone or in combination with cytarabine Moreover, talazoparib exerted a therapeutic effect in NGS mice bearing primary Burkitt lymphoma xenografts. In conclusion, IGH/MYC-positive Burkitt lymphoma/leukemia cells have decreased BRCA2 and are sensitive to PARP1 inhibition alone or in combination with other chemotherapies. This study postulates that IGH/MYC-induced BRCA2 deficiency may predispose Burkitt lymphoma cells to synthetic lethality triggered by PARP1 inhibitors. http://mcr.aacrjournals.org/content/molcanres/15/8/967/F1.large.jpg.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540764PMC
http://dx.doi.org/10.1158/1541-7786.MCR-16-0468DOI Listing

Publication Analysis

Top Keywords

brca2 deficiency
12
parp1 inhibitors
12
burkitt lymphoma
12
synthetic lethality
8
burkitt lymphoma/leukemia
8
lymphoma/leukemia cells
8
igh/myc-positive burkitt
8
lymphoma cells
8
brca2
5
burkitt
5

Similar Publications

In Japan, 5 years have passed since the initiation of precision cancer medicine, and recent data accumulation in familial pancreatic cancer (FPC) and hereditary pancreatic cancer is outstanding. Multigene germline panel tests (MGPTs) have revealed that 7%-18% of patients with pancreatic cancer (PC) harbor pathogenic germline variants (PGVs), almost equal to the levels of breast, ovarian, endometrial, and colorectal cancers, with a higher incidence in FPC (14%-26%). The majority of PGVs seen in PC patients are clinically actionable and associated with homologous recombination (HR) pathways (6%-10%, particularly BRCA1/2 in 5%-6%), and the clinical guidelines recommend or propose genetic testing for all PC patients.

View Article and Find Full Text PDF

Discovery of new inhibitors of nuclease MRE11.

Eur J Med Chem

January 2025

Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic. Electronic address:

MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors MU147 and MU1409. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin.

View Article and Find Full Text PDF

Purpose: The randomized GeparOla trial reported comparable pathological complete response (pCR) rates with neoadjuvant containing olaparib vs. carboplatin treatment. Here, we evaluate the association between functional homologous repair deficiency (HRD) by RAD51 foci and pCR, and the potential of improving patient selection by combining RAD51 and stromal tumor infiltrating lymphocytes (sTILs).

View Article and Find Full Text PDF

Homologous recombination repair deficiency (HRD) is involved in the development of high-grade serous ovarian carcinoma (HGSOC) and its elevated sensitivity to platinum-based chemotherapy. To investigate the heterogeneity of the HRD-positive HGSOC we evaluated the HRD status, including BRCA mutations, genomic scar score, and methylation status of genes in 352 HGSOC specimens. We then divided the HRD-positive cohort into three molecular subgroups, the BRCA mutation cohort (BRCA+), BRCA1 methylation cohort (Meth+), and the rest of the HRD+ cohort (HRD+BRCA-Meth-), and evaluated their first-line chemotherapy response, benefit from olaparib, and progression-free survival (PFS).

View Article and Find Full Text PDF

Mismatch repair deficiency (MMRd) or microsatellite instability high (MSI-H) is rare in prostate cancer and more frequently observed in cases with ductal histology. MLH1 copy number loss is extremely rare in MMRd tumors. Herein, we describe a case of prostate ductal adenocarcinoma with MLH1 copy number loss, microsatellite instability high and BRCA2 mutation could derive benefit from immunotherapy plus ADT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!