EGFR/EGFRvIII remodels the cytoskeleton via epigenetic silencing of AJAP1 in glioma cells.

Cancer Lett

Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China. Electronic address:

Published: September 2017

EGFR amplification and mutations are the most common oncogenic events in GBM. EGFR overexpression correlates with GBM invasion, but the underlying mechanisms are poorly understood. In a previous study, we showed that AJAP1 is involved in regulating F-actin to inhibit the invasive ability of GBM. In addition, in a GBM cell line, the AJAP1 promoter was highly bound by H3K27me3 and, through bioinformatics analysis, we found that AJAP1 expression was negatively correlated with EGFR. In this study, we found that the pathway downstream of EGFR had a higher activation level in GBM cell lines, which led to excessive tumor suppressor silencing. Therefore, we deduced that in glioma cells, the pathway downstream of EGFR remodels the cytoskeleton via AJAP1 epigenetic silencing to enhance invasion. Furthermore, MK2206 reversed AJAP1 downregulation by inhibiting the EGFR pathway. In vivo, MK2206 also inhibited the proliferation and local invasion of 87-EGFRvIII. These data suggest that activation of the EGFR signal transduction pathway genetically silences anti-oncogenes to enhance GBM malignancy. MK2206 might be a promising therapeutic for EGFR/EGFRvIII-positive GBMs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2017.06.007DOI Listing

Publication Analysis

Top Keywords

remodels cytoskeleton
8
epigenetic silencing
8
glioma cells
8
gbm cell
8
pathway downstream
8
downstream egfr
8
egfr
7
ajap1
6
gbm
6
egfr/egfrviii remodels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!