ZnO NPs were prepared and deposited onto cotton fibers via ultrasound irradiation successfully. Different surfactants (SDS, HY, CTAB, TX-100) have been used to stabilize, homogenize the coated ZnO NPs and control their shape and size as encapsulated species. The use of surfactants has improved the durability of ZnO NPs and decreased its leaching in particular SDS. The small mean crystallite size for ZnO particles due to the use of surfactants is the main reason for decreasing the leached of ZnO particles from cotton substrate. SEM and XRD analysis revealed information about the shape and size of the coated ZnO nanoparticles. The use of SDS and HY surfactants in the synthesis of ZnO NPs coated fabrics showed the highest antibacterial and antifungal activities against different pathogenic bacterial and fungal species with high reduction reached over 90%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2017.03.050DOI Listing

Publication Analysis

Top Keywords

zno nps
16
zno particles
12
zno
8
cotton fibers
8
coated zno
8
shape size
8
surfactants
5
stabilization nano-structured
4
nano-structured zno
4
particles surface
4

Similar Publications

Anti-diabetic and anti-microbial activity of aspalathus linearis and syzygium aromaticum formulation mediated zinc oxide nanoparticles.

Med J Malaysia

January 2025

Nanobiomedicine lab, Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India.

Introduction: Zinc oxide nanoparticles (ZnO NPs) exhibit a wide range of biomedical applications majorly used as antiinflammatory, anti-cancer, anti-diabetic, and anti-microbial activity and other biomedical applications because they show less toxicity and are very compatible. Zinc metal is an inorganic and essential element in the human body at the trace level. ZnO NPs are also GRAS substances (Generally Recognized As Safe).

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

Cytotoxicity and Antimicrobial Efficacy of Fe-, Co-, and Mn-Doped ZnO Nanoparticles.

Molecules

December 2024

College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia.

Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties. However, the current use of ZnO NPs is hindered by their potential cytotoxicity concerns, which are likely attributed to the generation of reactive oxygen species (ROS) and the dissolution of particles to ionic zinc. To reduce the cytotoxicity of ZnO NPs, transitional metals are introduced into ZnO lattices to modulate the ROS production and NP dissolution.

View Article and Find Full Text PDF

A green and cost-effective sonochemical synthetic method was followed for coating silver-modified copper oxide (Ag-CuO) nanoparticles (NPs) on disposable surgical mask. The NP-coated masks were systematically characterized using XRD and FT-IR for understanding the structural and surface functionalities. In addition, the field emission scanning electron microscopy (FE-SEM) analysis showed the homogeneous coating of Ag-CuO NPs over the mask fibers.

View Article and Find Full Text PDF

Long-lasting antimicrobial effect of multipurpose ZnO nanoparticle-loaded dental resins enhanced by blue light photodynamic therapy.

Dent Mater

January 2025

Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada. Electronic address:

Objectives: This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term.

Methods: Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!