Background: Intensive selection has resulted in increased growth rates and muscularity in broiler chickens, in addition to adverse effects, including delayed organ development, sudden death syndrome, and altered metabolic rates. The biological mechanisms underlying selection responses remain largely unknown. Non-artificially-selected indigenous Chinese chicken breeds display a wide variety of phenotypes, including differential growth rate, body weight, and muscularity. The Wuding chicken breed is a fast growing large chicken breed, and the Daweishan mini chicken breed is a slow growing small chicken breed. Together they form an ideal model system to study the biological mechanisms underlying broiler chicken selection responses in a natural system. The objective of this study was to study the biological mechanisms underlying differential phenotypes between the two breeds in muscle and liver tissues, and relate these to the growth rate and body development phenotypes of the two breeds.

Results: The muscle tissue in the Wuding breed showed higher expression of muscle development genes than muscle tissue in the Daweishan chicken breed. This expression was accompanied by higher expression of acute inflammatory response genes in Wuding chicken than in Daweishan chicken. The muscle tissue of the Daweishan mini chicken breed showed higher expression of genes involved in several metabolic mechanisms including endoplasmic reticulum, protein and lipid metabolism, energy metabolism, as well as specific immune traits than in the Wuding chicken. The liver tissue showed fewer differences between the two breeds. Genes displaying higher expression in the Wuding breed than in the Daweishan breed were not associated with a specific gene network or biological mechanism. Genes highly expressed in the Daweishan mini chicken breed compared to the Wuding breed were enriched for protein metabolism, ABC receptors, signal transduction, and IL6-related mechanisms.

Conclusions: We conclude that faster growth rates and larger body size are related to increased expression of genes involved in muscle development and immune response in muscle, while slower growth rates and smaller body size are related to increased general cellular metabolism. The liver of the Daweishan breed displayed increased expression of metabolic genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477733PMC
http://dx.doi.org/10.1186/s12864-017-3845-9DOI Listing

Publication Analysis

Top Keywords

chicken breed
28
biological mechanisms
16
higher expression
16
chicken
13
growth rate
12
growth rates
12
mechanisms underlying
12
wuding chicken
12
breed
12
daweishan mini
12

Similar Publications

Common Ancestry of the Id Locus: Chromosomal Rearrangement and Polygenic Possibilities.

J Mol Evol

January 2025

Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.

The diversity in dermal pigmentation and plumage color among domestic chickens is striking, with Black Bone Chickens (BBC) particularly notable for their intense melanin hyperpigmentation. This unique trait is driven by a complex chromosomal rearrangement on chromosome 20 at the Fm locus, resulting in the overexpression of the EDN3 (a gene central to melanocyte regulation). In contrast, the inhibition of dermal pigmentation is regulated by the Id locus.

View Article and Find Full Text PDF

Background: Newcastle disease significantly impacts the global poultry industry and is prevalent in many African countries, including Ethiopia. The objective of this research is to determine the humoral immune response to Newcastle Disease Virus (NDV), identify the circulating NDV genotype, and evaluate the correlation between the diagnostic tests used in backyard chickens in the Jimma Zone, southwest Ethiopia.

Methods: A total of 90 swab and blood samples were purposively collected from symptomatic backyard chicken in the period between February and April 2022.

View Article and Find Full Text PDF

Coccidiosis, a parasitic disease caused by Eimeria protozoa that parasitizes intestinal tissues of chicken, poses a challenge to the development of the poultry industry. circRNAs are a class of circular RNA macromolecules crucial in the immune response to pathogens. Previous studies have shown that gga-miR-2954 inhibits the inflammatory response to Eimeria tenella (E.

View Article and Find Full Text PDF

Aflatoxin B1 impairs the growth and development of chicken PGCs through oxidative stress and mitochondrial dysfunction.

Ecotoxicol Environ Saf

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China. Electronic address:

Aflatoxins harm the reproductive system and gamete development in animals. Primordial germ cells (PGCs) in chickens, as ancestral cells of gametes, are essential for genetic transmission, yet the impact and mechanisms of aflatoxins on them remain elusive. This study systematically investigated the effects of aflatoxin B1 (AFB1) on chicken PGCs and their potential mechanisms using an in vitro culture model.

View Article and Find Full Text PDF

Improvement of the accuracy of breeding value prediction for egg production traits in Muscovy duck using low-coverage whole-genome sequence data.

Poult Sci

January 2025

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China. Electronic address:

Low-coverage whole genome sequencing (lcWGS) is an effective low-cost genotyping technology when combined with genotype imputation approaches. It facilitates cost-effective genomic selection (GS) programs in agricultural animal populations. GS based on lcWGS data has been successfully applied to livestock such as pigs and donkeys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!