Targeting activated protein C to treat hemophilia.

Curr Opin Hematol

aDepartment of Haematology, University of Cambridge, Cambridge Institute for Medical Research bDepartment of Haematology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK.

Published: September 2017

Purpose Of Review: Hemophilia is a debilitating disease, marked by frequent, painful bleeding events, joint deterioration and early death. All current treatments consist of i.v. infusions of replacement factor or other procoagulant factors, and are incompletely effective, due in part to the short half-lives of the proteins. An alternative approach is to rebalance hemostasis by inhibiting natural anticoagulant mechanisms. In this article, we explain why activated protein C (APC) is an appropriate and safe target for the treatment of hemophilia.

Recent Findings: A serpin (serine protease inhibitor) was engineered to specifically inhibit APC and was found to rescue hemostasis in a hemophilia mouse model, even after a severe tail clip injury. However, APC is also anti-inflammatory and has cytoprotective activities, raising safety concerns over the use of an APC inhibitor to treat hemophilia. We summarize the molecular basis of the anticoagulant and signaling activities of APC to assess the potential impact of targeting APC.

Summary: We conclude that the signaling and anticoagulant functions of APC are in spatially and kinetically distinct compartments, and that it is possible to specifically inhibit the anticoagulant activity of APC. Targeting APC with a serpin is remarkably effective and may be safe for long-term prophylactic use in the treatment of hemophilia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548501PMC
http://dx.doi.org/10.1097/MOH.0000000000000364DOI Listing

Publication Analysis

Top Keywords

activated protein
8
treat hemophilia
8
apc
8
hemophilia
5
targeting activated
4
protein treat
4
hemophilia purpose
4
purpose review
4
review hemophilia
4
hemophilia debilitating
4

Similar Publications

8-OHdG and Nrf2 Protein are Expressed Consistently in Various T Stages of Invasive Breast Carcinoma.

Asian Pac J Cancer Prev

January 2025

Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

Objective: Oxidative stress prompts breast cancer cells to adapt by raising the lethal threshold and enhancing the antioxidant mechanism, thereby enabling survival and continuous proliferation that facilitates tumor progression. Nrf2 and 8-OHdG are indicative of oxidative stress activity and impact the progression of breast cancer. We aimed to analyze the expression of Nrf2 and 8-OHdG in various T stages of breast cancer in our hospital.

View Article and Find Full Text PDF

Ventricular arrhythmias induced by ischemia/reperfusion injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction. This study investigated the protective effects of the β2-adrenergic receptor (β2-AR) agonist clenbuterol against ischemia/reperfusion-induced arrhythmias and the underlying mechanism. Anesthetized rats were subjected to 10-min left coronary artery occlusion and 10-min reperfusion in vivo.

View Article and Find Full Text PDF

LINC01224 promotes the Warburg effect in gastric cancer by activating the miR-486-5p/PI3K axis.

In Vitro Cell Dev Biol Anim

January 2025

Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.

The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated.

View Article and Find Full Text PDF

Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases.

J Integr Plant Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.

Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. HO, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!