A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Serum microRNAs as Early Indicators for Estimation of Exposure Degree in Response to Ionizing Irradiation. | LitMetric

Serum microRNAs as Early Indicators for Estimation of Exposure Degree in Response to Ionizing Irradiation.

Radiat Res

a   Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Published: September 2017

Exposure to ionizing radiation from nuclear devices, spaceflights or terrorist attacks represents a major threat to human health and public security. After a radiological incident, noninvasive biomarkers that can facilitate rapid assessment of exposure risk in the early stages are urgently needed for optimal medical treatment. Serum microRNAs (miRNAs) are ideal biomarkers because they are stable in response to environmental changes, they are common among different species and are easily collected. Here, we performed miRNA PCR arrays to analyze miRNA expression profiles at 24 h postirradiation. Blood samples were collected from animals that received 0.5-2 Gy total-body carbon-ion irradiation. A specific signature with 12 radiosensitive miRNAs was selected for further validation. After exposure to 0.1-2 Gy of carbon-ion, iron-ion or X-ray radiations, five miRNAs that showed a significant response to these radiation types were selected for further observation of dose- and time-dependent changes: miR-183-5p, miR-9-3p, miR-200b-5p, miR-342-3p and miR-574-5p. We developed a universal model using these five miRNAs to predict the degree of exposure to different radiation types with high sensitivity and specificity. In conclusion, we have identified a set of miRNAs that are quite sensitive to different radiation types in the early stages after exposure, demonstrating their potential use as effective indicators to predict the degree of exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RR14702.1DOI Listing

Publication Analysis

Top Keywords

radiation types
12
serum micrornas
8
early stages
8
predict degree
8
degree exposure
8
exposure
7
mirnas
5
micrornas early
4
early indicators
4
indicators estimation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!