This study examined whether Toll-like receptors 2 (TLR2) contribute to rapid kindling epileptogenesis. A TLR2 agonist, lipoteichoic acid (LTA), LTA antibody (LTA-A), or normal saline (control) was administered daily over 3 consecutive days, unilaterally into ventral hippocampus of adult male Wistar rats. Thirty minutes after the last injection, the animals were subjected to a rapid kindling procedure. The ictogenesis was gauged by comparing afterdischarge threshold (ADT) and afterdischarge duration (ADD) before the treatments, after the treatments prior to kindling, and 24 h after kindling. Kindling progression and retention were analyzed using video recording. The results showed that before kindling, LTA produced an ADT reduction. Neither LTA nor LTA-A affected baseline ADD. On kindling progression, LTA accelerated occurrence of generalized seizures, whereas LTA-A delayed this effect. Treatment with LTA-A reduced the number of secondary generalized complex partial seizures. Twenty-four hours after kindling, the rats of both the saline and LTA groups showed increased hippocampal excitability as compared with prekindling parameters. Administration of LTA-A prevented kindling-induced increase of hippocampal excitability. Immunostaining revealed that LTA-A attenuated the inflammatory response produced by seizures. These findings suggest that the activation of TLR2 in the hippocampus may facilitate limbic epileptogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554076PMC
http://dx.doi.org/10.1111/epi.13826DOI Listing

Publication Analysis

Top Keywords

kindling epileptogenesis
8
toll-like receptors
8
kindling
8
rapid kindling
8
kindling kindling
8
kindling progression
8
hippocampal excitability
8
lta
6
lta-a
6
regulation kindling
4

Similar Publications

Seizures in people with Alzheimer's disease are increasingly recognized to worsen disease burden and accelerate functional decline. Harnessing established antiseizure medicine discovery strategies in rodents with Alzheimer's disease associated risk genes represents a novel way to uncover disease modifying treatments that may benefit these Alzheimer's disease patients. This commentary discusses the recent evaluation by Dejakaisaya and colleagues to assess the antiseizure and disease-modifying potential of the repurposed cephalosporin antibiotic, ceftriaxone, in the Tg2576 mouse model.

View Article and Find Full Text PDF

Empagliflozin Mitigates PTZ-Induced Seizures in Rats: Modulating Npas4 and CREB-BDNF Signaling Pathway.

J Neuroimmune Pharmacol

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Empagliflozin (EMPA) is one of the sodium/glucose cotransporter 2 (SGLT2) inhibitors that has been recently approved for the treatment of diabetes mellitus type II. Recently, EMPA has shown protective effects in different neurological disorders, besides its antidiabetic activity. Kindling is a relevant model to study epilepsy and neuroplasticity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effect of 40-Hz audiovisual stimulation on seizure susceptibility and amyloid-beta plaque levels in 5xFAD mice, a model for Alzheimer's disease.
  • Results showed that this sensory stimulation decreased seizure severity and delayed epileptogenesis, with 5xFAD mice experiencing about a 50% reduction in amyloid pathology compared to those without stimulation.
  • The findings suggest that 40-Hz stimulation may benefit both the reduction of Aβ pathology and possibly influence glial cells, impacting seizure activity, even in mice without amyloid plaques.
View Article and Find Full Text PDF

Epilepsy affects at least 1% of the global population of all socioeconomic backgrounds. Data obtained from previous studies suggest the role of mTOR signaling in epileptogenesis. The present study aimed to investigate the hypothesis that mTOR inhibitor sulfamethizole might produce antiepileptic effects in pentylenetetrazole (PTZ)-induced kindling seizures in mice.

View Article and Find Full Text PDF

The secretions of Telodeinopus canaliculatus, a giant millipede, are used in traditional medicine to treat epileptic seizures. Therefore, this work aimed to assess the antiepileptogenic- and anxiolytic-like effects of an extract of T. canaliculatu in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!