A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of structural components of artificial turf on the transmission of impacts in football players. | LitMetric

Effects of structural components of artificial turf on the transmission of impacts in football players.

Sports Biomech

a Faculty of Physical Activity and Sports Sciences, Department of Sports Science and Physical Activity , Catholic University of Murcia, Murcia , Spain.

Published: June 2018

The third generation of artificial turf systems (ATS) has matched the mechanical behaviour of natural grass, but today a high heterogeneity at structural level and mechanical behaviour in the new ATS also exists. The objective was to analyse the effect of the structural components of ATS football pitches and running speed on the capacity of impact attenuation. A total of 12 athletes were evaluated at three speed conditions (3.33 m/s, 4 m/s and maximum speed) on four different ATS, classifying them by their components (length of fibre, type of in-fill and sub-base). Impact attenuation was significantly higher in ATS3, characterised by longer fibre compared to other ATS with less fibre length. The ATS4 with a higher length fibre and built on compacted granular material proportioned significantly lower values in the maximum peaks of tibia acceleration. Finally, as speed increases, the peak tibia impacts were significantly higher. Longer fibre length and the capacity to accommodate a higher quantity of infill facilitate higher impact attenuation. Equally, a compacted granular sub-base is related to lower magnitude of maximum tibia peaks. Finally, the magnitude of the tibia acceleration peaks is dependent of running speed for all ATS analysed, being higher as speed increases.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14763141.2017.1285347DOI Listing

Publication Analysis

Top Keywords

impact attenuation
12
structural components
8
artificial turf
8
mechanical behaviour
8
running speed
8
speed ats
8
length fibre
8
longer fibre
8
fibre length
8
compacted granular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!