Background: Our previous studies demonstrated that the class IA PI3K/p110β is critical in castration-resistant progression of prostate cancer (CRPC) and that targeting prostate cancer with nanomicelle-loaded p110β-specific inhibitor TGX221 blocked xenograft tumor growth in nude mice, confirming the feasibility of p110β-targeted therapy for CRPCs. To improve TGX221's aqueous solubility, in this study, we characterized four recently synthesized TGX221 analogs.

Methods: TGX221 analog efficacy were examined in multiple prostate cancer cell lines with the SRB cell growth assay, Western blot assay for AKT phosphorylation and cell cycle protein levels. Target engagement with PI3K isoforms was evaluated with cellular thermal shift assay. PI3K activity was determined with the Kinase-Glo Plus luminescent kinase assay. Cell cycle distribution was evaluated with flow cytometry after propidium iodide staining.

Results: As expected, replacing either one of two major functional groups in TGX221 by more hydrophilic groups dramatically improved the aqueous solubility (about 40-fold) compared to TGX221. In the CETSA assay, all the analogs dramatically shifted the melting curve of p110β protein while none of them largely affected the melting curves of p110α, p110γ, or Akt proteins, indicating target-specific engagement of these analogs with p110β protein. However, functional evaluation showed that only one of the analogs BL140 ubiquitously inhibited AKT phosphorylation in all CRPC cell lines tested with diverse genetic abnormalities including AR, PTEN, and p53 status. BL140 was superior than GSK2636771 (IC 5.74 vs 20.49 nM), the only p110β-selective inhibitor currently in clinical trials, as revealed in an in vitro Kinase-Glo assay. Furthermore, BL140 exhibited a stronger inhibitory effect than GSK2636771 on multiple CRPC cell lines including a MDV3100-resistant C4-2B cell subline, indicating BL140 elimination of MDV3100 resistance. Mechanistic studies revealed that BL140 blocked G phase cell cycle entry by reducing cyclin D1 but increasing p27 protein levels.

Conclusion: These studies suggested that BL140 is a promising p110β-specific inhibitor with multiple superb properties than GSK2636771 worthy for further clinical development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527967PMC
http://dx.doi.org/10.1002/pros.23377DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
p110β-specific inhibitor
12
cell lines
12
cell cycle
12
aqueous solubility
8
cell
8
akt phosphorylation
8
p110β protein
8
crpc cell
8
bl140
7

Similar Publications

Comprehensive analysis of the interaction microbiome and prostate cancer: an initial exploration from multi-cohort metagenome and GWAS studies.

J Transl Med

January 2025

Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Wuhan, 430030, P.R. China.

Introduction: Prostate cancer is one of the most common cancers in the United States with a high mortality rate. In recent years, the traditional opinion about prostate microbiome was challenged. Although there still are some arguments, an escalating number of researchers are shifting their focus toward the microbiome within the prostate tumor environment.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.

View Article and Find Full Text PDF

Purposes: The presence of clinically significant prostate cancer (csPCa) is equivocal for patients with prostate imaging reporting and data system (PI-RADS) category 3. We aim to develop deep learning models for re-stratify risks in PI-RADS category 3 patients.

Methods: This retrospective study included a bi-parametric MRI of 1567 consecutive male patients from six centers (Centers 1-6) between Jan 2015 and Dec 2020.

View Article and Find Full Text PDF

Background And Objective: A gonadotropin-releasing hormone (GnRH) agonist such as leuprolide is widely used to achieve sustained suppression of testosterone levels, which play a critical role in the treatment of prostate cancer. Recent advances in drug delivery systems have led to the development of long-acting depot formulations, such as the 6-month intramuscular (IM) leuprolide formulation, which aim to simplify dosing and improve convenience for both patients and healthcare providers. Exploring extended dosing intervals for such formulations represents a promising approach to further optimize treatment regimens, potentially balancing efficacy with patient-centered care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!