In the present work we studied the expression of genes from nitrogen central metabolism in the yeast Dekkera bruxellensis and under regulation by the Nitrogen Catabolite Repression mechanism (NCR). These analyses could shed some light on the biological mechanisms involved in the adaptation and survival of this yeast in the sugarcane fermentation process for ethanol production. Nitrogen sources (N-sources) in the form of ammonium, nitrate, glutamate or glutamine were investigated with or without the addition of methionine sulfoximine, which inhibits the activity of the enzyme glutamine synthetase and releases cells from NCR. The results showed that glutamine might act as an intracellular sensor for nitrogen availability in D. bruxellensis, by activating NCR. Gene expression analyses indicated the existence of two different GATA-dependent NCR pathways, identified as glutamine-dependent and glutamine-independent mechanisms. Moreover, nitrate is sensed as a non-preferential N-source and releases NCR to its higher level. After grouping genes according to their regulation pattern, we showed that genes for ammonium assimilation represent a regulon with almost constitutive expression, while permease encoding genes are mostly affected by the nitrogen sensor mechanism. On the other hand, nitrate assimilation genes constitute a regulon that is primarily subjected to induction by nitrate and, to a lesser extent, to a repressive mechanism by preferential N-sources. This observation explains our previous reports showing that nitrate is co-consumed with ammonium, a trait that enables D. bruxellensis cells to scavenge limiting N-sources in the industrial substrate and, therefore, to compete with Saccharomyces cerevisiae in this environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10482-017-0888-5 | DOI Listing |
FEMS Microbiol Lett
January 2025
School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
World J Microbiol Biotechnol
November 2024
Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China.
Nitrogen sources are pivotal for the formation of fungal mycelia and the biosynthesis of metabolites, playing a crucial role in the growth and development of fungi. Amino acids are integral to protein construction, constitute an essential nitrogen source for fungi. Fungi actively uptake amino acids from their surroundings, a process that necessitates the involvement of amino acid permeases (AAPs) located on the plasma membrane.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2024
Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.
Cra (catabolite repressor/activator) is a global transcription factor (TF) that plays a pleiotropic role in controlling the transcription of several genes involved in carbon utilization and energy metabolism. Multiple studies have investigated the regulatory mechanism of Cra and its rational use for metabolic regulation, but due to the complexity of its regulation, there remain challenges in the efficient use of Cra. Here, the structure, mechanism of action, and regulatory function of Cra in carbon and nitrogen flow are reviewed.
View Article and Find Full Text PDFMicrobiol Res
December 2024
Department of Microbiology, University of Innsbruck, Innsbruck, Austria. Electronic address:
Trichoderma atroviride is a mycoparasitic fungus with antagonistic activity against fungal pathogens and is used as a pathogen control agent alternative to synthetic fungicides. Sensing nutrient availability in the environment and adjusting metabolism for optimal growth, development and reproduction is essential for adaptability and is relevant to its mycoparasitic activity. During mycoparasitism, secondary metabolites are produced to weaken the fungal prey and support the attack.
View Article and Find Full Text PDFEMBO J
October 2024
Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!