Two-dimensional (2D) materials have considerably expanded the field of materials science in the past decade. Even more recently, various 2D materials have been assembled into vertical van der Waals heterostacks, and it has been proposed to combine them with other low-dimensional structures to create new materials with hybridized properties. We demonstrate the first direct images of a suspended 0D/2D heterostructure that incorporates C molecules between two graphene layers in a buckyball sandwich structure. We find clean and ordered C islands with thicknesses down to one molecule, shielded by the graphene layers from the microscope vacuum and partially protected from radiation damage during scanning transmission electron microscopy imaging. The sandwich structure serves as a 2D nanoscale reaction chamber, allowing the analysis of the structure of the molecules and their dynamics at atomic resolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466370 | PMC |
http://dx.doi.org/10.1126/sciadv.1700176 | DOI Listing |
Materials (Basel)
January 2025
Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland.
The development of new graphene-based materials necessitates the application of suitable material imaging techniques, especially for the identification of defects in the graphene structure and its continuity. For this purpose, it is natural to use one of the main properties of graphene-electrical conductivity. In this work, we prepare a 9 cm large-area monolayer graphene membrane on porous scaffolding sealed with either GO or rGO.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan.
This study examines the influence of nanofillers on the ultraviolet (UV) penetration depth of photopolymer resins used in stereolithography (SLA) 3D printing, and their impact on printability. Three nanofillers, multiwalled carbon nanotubes (MWCNT), graphene nanoplatelets (xGNP), and boron nitride nanoparticles (BNNP), were incorporated into a commercially available photopolymer resin to prepare nanocomposite formulations. The UV penetration depth (Dp) was assessed using the Windowpane method, revealing a significant reduction with the addition of nanofillers.
View Article and Find Full Text PDFMolecules
December 2024
College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China.
Molecules
December 2024
Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly nanomaterials, such as CuS. Chemical ligands play a crucial role in these hybrid photodetectors, as they enable charge transfer between the NCs and SLG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!