The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of [Formula: see text] ~2 × 10 to 3.5 × 10 s. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457031 | PMC |
http://dx.doi.org/10.1126/sciadv.1602705 | DOI Listing |
Fatigue cracking of rib-to-deck conventional single-sided welded joints is a prevalent issue in orthotropic steel decks (OSDs), significantly impacting their structural integrity and durability. Rib-to-deck innovative double-sided welded joints have the potential to enhance the fatigue resistance of OSD. However, Welding Residual Stresses (WRS) significantly influence the fatigue life of these joints, mandating its consideration in fatigue assessments.
View Article and Find Full Text PDFBone
December 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:
Endochondral ossification (EO) is a pivotal process during fracture healing and traumatic heterotopic ossification (HO), involving the cartilaginous matrix synthesis and mineralization. Unlike the extracellular matrix, the hyaluronan (HA)-rich pericellular matrix (PCM) directly envelops chondrocytes, serving as the frontline for extracellular signal reception and undergoing dynamic remodeling. Pentraxin 3 (PTX3), a secreted glycoprotein, facilitates HA matrix assembly and remodeling.
View Article and Find Full Text PDFJ Endod
December 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan 430079, People's Republic of China. Electronic address:
Introduction: This study aimed to assess the effect of cavity designs on instrumentation, obturation and fracture resistance for mandibular first premolars with Vertucci V canal.
Methods: Mandibular first premolars with Vertucci V canal were scanned with micro-CT. 20 teeth with moderately curved canal were prepared with conservative endodontic cavity (CEC/M) or traditional endodontic cavity (TEC/M), and 30 with severely curved canal were prepared with CEC (CEC/S), modified CEC (MCEC/S) or TEC (TEC/S).
Biomaterials
December 2024
Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:
Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China.
The introduction of defects in metal-organic frameworks (MOFs) is an effective method to improve the performance of MOFs in many applications, but it also compromises the mechanical properties of MOFs. Thus, a comprehensive understanding of the mechanical properties of defective MOFs becomes important for the defect engineering in MOFs. Herein, using the in situ compression tests, we directly observe very different mechanical responses in HKUST-1 MOFs with various defect concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!