Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Star-shaped molecules with three mutually immiscible arms self-assemble to form a variety of novel structures, with conformations that attempt to minimize interfacial area between the domains composed of the different arms. The geometric frustration caused by the joining of these arms at a common centre limits the size and shape of each domain, encouraging the creation of complex and interesting solutions. Some solutions are tricontinuous, and these solutions (and others) share aspects of bicontinuous structures with amphiphilic assemblies as similar molecular segregation factors are at work. We describe both highly symmetric and balanced structures, as well as unbalanced solutions that take the form of intricately striped amphiphilic membranes. All these patterns can result in chiral assemblies with multiple networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5474035 | PMC |
http://dx.doi.org/10.1098/rsfs.2016.0130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!