Metallicity in a Holstein-Hubbard Chain at Half Filling with Gaussian Anharmonicity.

Sci Rep

School of Physics, University of Hyderabad, Central University P. O., Hyderabad, 500046, Telangana, India.

Published: June 2017

The Holstein-Hubbard model with Gaussian phonon anharmonicity is studied in one-dimension at half filling using a variational method based on a series of canonical transformations. A fairly accurate phonon state is chosen to average the transformed Holstein-Hubbard Hamiltonian to obtain an effective Hubbard model which is then solved using the exact Bethe - ansatz following Lieb and Wu to obtain the ground state energy, the average lattice displacement and the renormalized parameters. The Mott-Hubbard criterion, local spin moment and the von Neumann entropy (which is a measure of quantum entanglement) are calculated to determine the ground state phase diagram which shows that the width of the metallic phase flanked by the SDW and CDW phases increases with increasing anharmonicity at low and moderate values of anharmonicity but eventually saturates when the anharmonicity becomes substantially large.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476603PMC
http://dx.doi.org/10.1038/s41598-017-03985-2DOI Listing

Publication Analysis

Top Keywords

half filling
8
ground state
8
anharmonicity
5
metallicity holstein-hubbard
4
holstein-hubbard chain
4
chain half
4
filling gaussian
4
gaussian anharmonicity
4
anharmonicity holstein-hubbard
4
holstein-hubbard model
4

Similar Publications

Advancing medication compounding: Use of a pharmaceutical 3D printer to auto-fill minoxidil capsules for dispensing to patients in a community pharmacy.

Int J Pharm

January 2025

Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK. Electronic address:

Compounding medications in pharmacies is a common practice for patients with prescriptions that are not available commercially, but it is a laborious and error-prone task. The incorporation of emerging technologies to prepare personalised medication, such as 3D printing, has been delayed in smaller pharmacies due to concerns about potential workflow disruptions and learning curves associated with novel technologies. This study examines the use in a community pharmacy of a pharmaceutical 3D printer to auto-fill capsules and blisters using semisolid extrusion, incorporating an integrated quality control system.

View Article and Find Full Text PDF

The Neural Frontier of Future Medical Imaging: A Review of Deep Learning for Brain Tumor Detection.

J Imaging

December 2024

Laboratory of Automation and Manufacturing Engineering, Department of Industrial Engineering, Batna 2 University, Batna 05000, Algeria.

Brain tumor detection is crucial in medical research due to high mortality rates and treatment challenges. Early and accurate diagnosis is vital for improving patient outcomes, however, traditional methods, such as manual Magnetic Resonance Imaging (MRI) analysis, are often time-consuming and error-prone. The rise of deep learning has led to advanced models for automated brain tumor feature extraction, segmentation, and classification.

View Article and Find Full Text PDF

Rational Regulation of High-Entropy Perovskite Oxides through Hole Doping for Efficient Oxygen Electrocatalysis.

ACS Appl Mater Interfaces

January 2025

Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.

Due to the high configuration entropy, unique atomic arrangement, and electronic structures, high-entropy materials are being actively pursued as bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable zinc-air batteries (ZABs). However, a relevant strategy to enhance the catalytic activity of high-entropy materials is still lacking. Herein, a hole doping strategy has been employed to enable the high-entropy perovskite La(CrMnFeCoNi)O to effectively catalyze the ORR and OER.

View Article and Find Full Text PDF

Adrenaline Dilution in Dental Local Anesthetic Cartridges: A Practical Method Using the Inner Needle of Intravenous Catheter.

Cureus

December 2024

Division of Dental Anesthesiology, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JPN.

Local anesthesia is a routine medical procedure for dentists. To achieve the desired anesthetic effect of lidocaine and favorable hemostatic effects by adrenaline, the combination of 2% lidocaine + 1:80,000 adrenaline is commonly used, including in dental patients with underlying diseases for whom adrenaline in local anesthetics is problematic due to its vasoconstrictive effects, as the adrenaline concentration in dental local anesthetic cartridges in Japan is commercially set at 1:80,000. To reduce the effect of adrenaline on the cardiovascular system, adrenaline is sometimes diluted in dental local anesthetic cartridges.

View Article and Find Full Text PDF

Introduction: Herpes simplex virus type-2 (HSV-2) infection is a sexually transmitted disease (STD) that causes genital ulcers. The prevalence of HSV-2 increases because of its asymptomatic shedding. This study aimed to evaluate community knowledge and attitude toward HSV-2 infection in Al-Jouf region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!