The family of silicatein enzymes from marine sponges (phylum Porifera) is unique in nature for catalyzing the formation of inorganic silica structures, which the organisms incorporate into their skeleton. However, the synthesis of organosiloxanes catalyzed by these enzymes has thus far remained largely unexplored. To investigate the reactivity of these enzymes in relation to this important class of compounds, their catalysis of Si-O bond hydrolysis and condensation was investigated with a range of model organosilanols and silyl ethers. The enzymes' kinetic parameters were obtained by a high-throughput colorimetric assay based on the hydrolysis of 4-nitrophenyl silyl ethers. These assays showed unambiguous catalysis with / values on the order of 2-50 min μM Condensation reactions were also demonstrated by the generation of silyl ethers from their corresponding silanols and alcohols. Notably, when presented with a substrate bearing both aliphatic and aromatic hydroxy groups the enzyme preferentially silylates the latter group, in clear contrast to nonenzymatic silylations. Furthermore, the silicateins are able to catalyze transetherifications, where the silyl group from one silyl ether may be transferred to a recipient alcohol. Despite close sequence homology to the protease cathepsin L, the silicateins seem to exhibit no significant protease or esterase activity when tested against analogous substrates. Overall, these results suggest the silicateins are promising candidates for future elaboration into efficient and selective biocatalysts for organosiloxane chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502584PMC
http://dx.doi.org/10.1073/pnas.1613320114DOI Listing

Publication Analysis

Top Keywords

silyl ethers
12
biocatalysts organosiloxane
8
organosiloxane chemistry
8
silyl
5
recombinant silicateins
4
silicateins model
4
model biocatalysts
4
chemistry family
4
family silicatein
4
silicatein enzymes
4

Similar Publications

A Hexavalent Tellurium-Based Chalcogen Bonding Catalysis Platform: High Catalytic Activity and Controlling of Selectivity.

J Am Chem Soc

January 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China.

Herein, we describe a hexavalent tellurium-based chalcogen bonding catalysis platform capable of addressing reactivity and selectivity issues. This research demonstrates that hexavalent tellurium salts can serve as a class of highly active chalcogen bonding catalysts for the first time. The tellurium centers in these hexavalent catalysts have only one exposed interaction site, thus providing a favorable condition for the controlling of reaction selectivity.

View Article and Find Full Text PDF

TBAT-Catalyzed Dioxasilinane Formation from Beta-Hydroxy Ketones.

Tetrahedron

February 2025

Department of Chemistry, Western Washington University, Bellingham, WA 98225 (USA).

Beta-hydroxy ketones can be reduced using a sequence of ruthenium-catalyzed silyl etherification followed by tetrabutylammonium fluoride (TBAF) promoted intramolecular hydrosilylation. Switching from TBAF to tetrabutylammonium difluorotriphenylsilicate (TBAT), even without first forming the silyl ether, gave cyclic dioxasilinane products. These somewhat sensitive compounds could be isolated pure by column chromatography using florisil as the stationary phase.

View Article and Find Full Text PDF

Despite tremendous progress of dienamine catalysis along with its application in enantioselective synthesis over nearly two decades, certain limitations, especially with respect to the regioselectivity in the dienamine generation step, continue to persist. To overcome these shortcomings of classical dienamine catalysis, we now introduce the concept of alkoxy-directed dienamine catalysis and apply it to the enantioselective arene construction by desymmetrizing -enediones through [4 + 2]-cycloaddition. Catalyzed by a diphenylprolinol silyl ether, this reaction utilizes γ-alkoxy α,β-unsaturated aldehydes as the substrate and proceeds in a highly regioselective fashion through the intermediacy of δ-alkoxy dienamine.

View Article and Find Full Text PDF

Cobalt-catalyzed reduction of esters to alkanes.

Chem Commun (Camb)

January 2025

School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.

The reduction of aryl carboxylates to methyl and allyl arene was attained using a well-defined cobalt catalyst. This catalytic transformation employs only a sub-stoichiometric amount of base, and diethylsilane as a reductant. Catalytic activation of the Si-H bond of the silanes, C-O bond of the ester, and silyl ether intermediates by cobalt is crucial to achieving exhaustive reduction.

View Article and Find Full Text PDF

Polyolefins (POs), which constitute over 50% of all plastics, predominantly end up in landfills. To date, there have been no reports on mixtures of PO vitrimers. This study reports the successful synthesis of PO vitrimers from a mixture of 27.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!