With the rapid growth of targeted and immune-oncology therapies, novel statistical design approaches are needed to increase the flexibility and efficiency of early phase oncology trials. Basket trials enroll patients with defined biological deficiencies, but with multiple histologic tumor types (or indications), to discover in which indications the drug is active. In such designs different indications are typically analyzed independently. This, however, ignores potential biological similarities among the indications. Our research provides a statistical methodology to enhance such basket trials by assessing the homogeneity of the response rates among indications at an interim analysis, and applying a Bayesian hierarchical modeling approach in the second stage if the efficacy is deemed reasonably homogenous across indications. This increases the power of the study by allowing indications with similar response rates to borrow information from each other. Via simulations, we quantify the efficiency gain of our proposed approach relative to the conventional parallel approach. The operating characteristics of our method depend on the similarity of the response rates between the different indications. If the response rates are comparable in most or all indications after treatment with the investigational drug, a substantial increase in efficiency as compared to the conventional approach can be obtained as fewer patients are required or a higher power is attained. We also demonstrate that efficacy again decreases if the response rates vary considerably among tumor types but it is still better than the conventional approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cct.2017.06.009 | DOI Listing |
Sci Rep
December 2024
Department of Mechanical Engineering, School of Science and Engineering, The American University in Cairo, AUC Avenue, 11835, New Cairo, Egypt.
This study investigates the ablation performance of Inconel 718, a nickel-based superalloy, and metal matrix polycrystalline diamond (MMPCD), a super composite, using a nano-second (ns) pulsed laser across a range of ablation conditions. Single trenches varying in energy fluence and scanning speeds were created, analyzing the experimental responses in terms of ablation rate and surface roughness. Using regression techniques, models were developed to understand these relationships.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFSci Rep
December 2024
Gateway Antarctica, University of Canterbury, Christchurch, New Zealand.
The Tibetan Plateau is home to numerous glaciers that are important for freshwater supply and climate regulation. These glaciers, which are highly sensitive to climatic variations, serve as vital indicators of climate change. Understanding glacier-fed hydrological systems is essential for predicting water availability and formulating climate adaptation strategies.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.
View Article and Find Full Text PDFNat Commun
December 2024
Nanobiology Institute, Yale University, West Haven, CT, USA.
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!