Proteomic analysis of mesenchymal to Schwann cell transdifferentiation.

J Proteomics

Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011-1031, USA; Neuroscience Program, Iowa State University, Ames, IA 50011, USA. Electronic address:

Published: August 2017

Unlabelled: While transplantation of Schwann cells facilitates axon regeneration, remyelination and repair after peripheral nerve injury clinical use is limited by cell bioavailability. We posit that such limitation in cell access can be overcome by the use of autologous bone-marrow derived mesenchymal stem cells (MSCs). As MSCs can transdifferentiate to Schwann cell-phenotypes and accelerate nerve regeneration we undertook proteomic evaluation of the cells to uncover the protein contents that affects Schwann cell formulation. Transdifferentiated MSCs secrete significant amounts of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in cell-conditioned media that facilitated neurite outgrowth. MSC proteins significantly regulated during Schwann cell transdifferentiation included, but were not limited to, GNAI2, MYL9, ACTN4, ACTN1, ACTB, CAV-1, HSPB1, PHB2, TBB4B, CTGF, TGFI1, ARF6, EZR, GELS, VIM, WNT5A, RTN4, EFNB1. These support axonal guidance, myelination, neural development and neural growth and differentiation. The results unravel the molecular events that underlie cell transdifferentiation that ultimately serve to facilitate nerve regeneration and repair in support of cell transplantation.

Significance Statement: While Schwann cells facilitate axon regeneration, remyelination and repair after peripheral nerve injury clinical use is limited by cell bioavailability. We posit that such limitation in cell access can be overcome by the use of bone-marrow derived mesenchymal stem cells (MSCs) transdifferentiated to Schwann cell-phenotypes. In the present study, we undertook the first proteomic evaluation of these transdifferentiated cells to uncover the protein contents that affects Schwann cell formulation. Furthermore, these transdifferentiated MSCs secrete significant amounts of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in cell-conditioned media that facilitated neurite outgrowth. Our results demonstrate that a number of MSC proteins were significantly regulated following transdifferentiation of the MSCs supporting roles in axonal guidance, myelination, neural development and differentiation. The conclusions of the present work unravel the molecular events that underlie cell transdifferentiation that ultimately serve to facilitate nerve regeneration and repair in support of cell transplantation. Our study was the first proteomic comparison demonstrating the transdifferentiation of MSCs and these reported results can affect a wide field of stem cell biology, tissue engineering, and proteomics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2017.06.011DOI Listing

Publication Analysis

Top Keywords

schwann cell
16
cell transdifferentiation
16
cell
13
nerve regeneration
12
schwann
8
schwann cells
8
axon regeneration
8
regeneration remyelination
8
remyelination repair
8
repair peripheral
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!