BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management.

DNA Repair (Amst)

Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States. Electronic address:

Published: August 2017

DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576989PMC
http://dx.doi.org/10.1016/j.dnarep.2017.06.007DOI Listing

Publication Analysis

Top Keywords

pathway crosstalk
20
dna repair
16
base excision
8
excision repair
8
repair pathways
8
ber proteins
8
repair pathway
8
pathway
7
repair
7
dna
7

Similar Publications

Augmented extracellular matrix (ECM) stiffness is a mechanical hallmark of cancer. Mechanotransduction studies have extensively probed the mechanisms by which ECM stiffness regulates intracellular communication. However, the influence of stiffness on intercellular communication aiding tumor progression in three-dimensional microenvironments remains unknown.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by widespread immune dysregulation that affects multiple organ systems, including the skin and cardiovascular system. The crosstalk between different cell death pathways-such as apoptosis, necroptosis, and neutrophil extracellular trap (NETosis), plays a pivotal role in the pathogenesis of SLE, influencing both cutaneous and cardiac manifestations. Cutaneous lupus erythematosus (CLE) is one of the most common early signs of SLE, affecting up to 80% of patients.

View Article and Find Full Text PDF

Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.

View Article and Find Full Text PDF

Numerous regulators of cardiomyocyte (CM) proliferation have been identified, yet how they coordinate during cardiac development or regeneration is poorly understood. Here, we developed a computational model of the CM proliferation regulatory network to obtain key regulators and systems-level understanding. The model defines five modules (DNA replication, mitosis, cytokinesis, growth factor, Hippo pathway) and integrates them into a network of 72 nodes and 88 reactions that correctly predicts 73 of 78 (93.

View Article and Find Full Text PDF

Atherosclerosis is a complex multifactorial process that occurs in the vascular wall over many years and is responsible for a number of major diseases that affect quality of life and prognosis. A growing body of evidence supports the notion that immune mechanisms underlie atherogenesis. Macrophages are considered one of the key participants in atherogenesis, but their role in this process is multifaceted, which is largely due to the peculiarities of their cellular metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!