Biologically constrained optimization based cell membrane segmentation in C. elegans embryos.

BMC Bioinformatics

Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.

Published: June 2017

Background: Recent advances in bioimaging and automated analysis methods have enabled the large-scale systematic analysis of cellular dynamics during the embryonic development of Caenorhabditis elegans. Most of these analyses have focused on cell lineage tracing rather than cell shape dynamics. Cell shape analysis requires cell membrane segmentation, which is challenging because of insufficient resolution and image quality. This problem is currently solved by complicated segmentation methods requiring laborious and time consuming parameter adjustments.

Results: Our new framework BCOMS (Biologically Constrained Optimization based cell Membrane Segmentation) automates the extraction of the cell shape of C. elegans embryos. Both the segmentation and evaluation processes are automated. To automate the evaluation, we solve an optimization problem under biological constraints. The performance of BCOMS was validated against a manually created ground truth of the 24-cell stage embryo. The average deviation of 25 cell shape features was 5.6%. The deviation was mainly caused by membranes parallel to the focal planes, which either contact the surfaces of adjacent cells or make no contact with other cells. Because segmentation of these membranes was difficult even by manual inspection, the automated segmentation was sufficiently accurate for cell shape analysis. As the number of manually created ground truths is necessarily limited, we compared the segmentation results between two adjacent time points. Across all cells and all cell cycles, the average deviation of the 25 cell shape features was 4.3%, smaller than that between the automated segmentation result and ground truth.

Conclusions: BCOMS automated the accurate extraction of cell shapes in developing C. elegans embryos. By replacing image processing parameters with easily adjustable biological constraints, BCOMS provides a user-friendly framework. The framework is also applicable to other model organisms. Creating the biological constraints is a critical step requiring collaboration between an experimentalist and a software developer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477254PMC
http://dx.doi.org/10.1186/s12859-017-1717-6DOI Listing

Publication Analysis

Top Keywords

cell shape
24
cell
12
cell membrane
12
membrane segmentation
12
elegans embryos
12
biological constraints
12
segmentation
9
biologically constrained
8
constrained optimization
8
optimization based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!