The mitochondrial acetyl-CoA acetyltransferase (acetyl-CoA:acetyl-CoA C-acetyltransferase, EC 2.3.1.9), which is involved in the biosynthesis or degradation of ketone bodies, was directly demonstrated in organ extracts applying a two-step chromatography-immunoelectrophoresis method. In liver, the enzyme can be shown in at least three forms: in an unmodified state, designated as AAT, and in the CoASH-modified forms A1 and A2, in amounts of 51.5 +/- 5.0%, 39.4 +/- 4.8% and 9.1 +/- 2.7% (areas of immunoprecipitation), respectively. This pattern, which could not be altered by a treatment with glutathione, resembles that of mitochondrial acetyl-CoA acetyltransferase in extrahepatic tissues. However, the proportion of the unmodified enzyme (AAT) is lower as compared to those in other tissues such as brain (81.5 +/- 4.4%). CoASH-modification and transformation into modified forms, which equal naturally occurring forms, can be demonstrated in vitro with acetyl-CoA acetyltransferase from both liver and brain. Thus CoASH-modification of mitochondrial acetyl-CoA acetyltransferase seems to be a process of general importance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4838(85)90283-3DOI Listing

Publication Analysis

Top Keywords

acetyl-coa acetyltransferase
20
mitochondrial acetyl-coa
16
acetyltransferase
5
mitochondrial
4
acetyltransferase organs
4
organs rat
4
rat form
4
form patterns
4
patterns coenzyme-a-mediated
4
coenzyme-a-mediated modification
4

Similar Publications

Objectives: While ketone bodies are not the main heart fuel, exercise may increase their uptake. Objectives: This study aimed to investigate the effect of 6-week endurance training and Pyruvate dehydrogenase kinase 4 )PDK4( inhibition on ketone bodies metabolism in the heart of diabetic rats with emphasis on the role of Peroxisome proliferator-activated receptor-gamma coactivator PGC-1alpha (PGC-1α).

Materials And Methods: Sixty male Wistar rats were divided into eight groups: healthy control group (CONT), endurance training group (TRA), diabetic group (DM), DM + EX group, Dichloroacetate (DCA) group, DM + DCA group, TRA + DCA group, and DM + TRA + DCA group.

View Article and Find Full Text PDF

Phytoplankton plays a crucial role in the fate of pollutants in aquatic ecosystems by biotransformation and bioaccumulation. Aniline was listed in priority pollutants due to its toxicity and widespread distribution in the aquatic environment. This study focused on investigating the capacity and mechanism of eukaryotic alga Chlamydomonas reinhardtii in transforming aniline.

View Article and Find Full Text PDF

SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in siderophore biosynthesis.

J Struct Biol X

June 2025

Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy.

Siderophore-mediated iron acquisition is essential for the virulence of , a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in .

View Article and Find Full Text PDF

Novel inhibitors of the (VIBVN) NAT protein identified through pharmacophore modeling.

Sci Rep

January 2025

Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266071, China.

Arylamine N-acetyltransferases (NATs, E.C. 2.

View Article and Find Full Text PDF

Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation.

Sci Adv

January 2025

Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!