For the purpose of safe disposal of biomass contaminated by biosorption of heavy metals, phosphate-assisted pyrolysis of water hyacinth biomass contaminated by lead (Pb) was tried to reduce the bioavailability and leaching potential of Pb, using direct pyrolysis without additive as a control method. Direct pyrolysis of the contaminated biomass at low temperatures (300 and 400°C) could reduce the bioavailability of Pb, but the leaching potential of Pb was increased with the rising pyrolysis temperature. While phosphate-assisted pyrolysis significantly enhanced the recovery and stability of Pb in the char. Specifically, the percentages of bioavailable Pb and leachable Pb in the chars obtained by phosphate-assisted pyrolysis at low temperatures were reduced to less than 5% and 7%, respectively. The sequential extraction test indicated the transformation of Pb into more stable fractions after phosphate-assisted pyrolysis, which was related to the formation of Pb phosphate minerals including pyromorphite and lead-substituted hydroxyapatite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2017.06.025 | DOI Listing |
Bioresour Technol
October 2017
College of Chemistry & Chemical Engineering, Shaoxing University, Zhejiang 312000, China.
For the purpose of safe disposal of biomass contaminated by biosorption of heavy metals, phosphate-assisted pyrolysis of water hyacinth biomass contaminated by lead (Pb) was tried to reduce the bioavailability and leaching potential of Pb, using direct pyrolysis without additive as a control method. Direct pyrolysis of the contaminated biomass at low temperatures (300 and 400°C) could reduce the bioavailability of Pb, but the leaching potential of Pb was increased with the rising pyrolysis temperature. While phosphate-assisted pyrolysis significantly enhanced the recovery and stability of Pb in the char.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!