Protein-based composites have always been desirable biomaterials as they can be fabricated into a wide range of biomaterials with tunable properties, including modulation of mechanical properties and control of cell responses. Both egg white protein (EW) and silk fibroin (SF) are biocompatible, biodegradable, non-toxic and naturally abundant biopolymers. In order to obtain biocompatible composite films with tunable performance, EW and SF were blended at various ratios. Raising the SF ratio in the composite films significantly increased breaking strength, but impaired flexibility. Conversely, increasing the EW ratio remarkably enhanced elasticity of the composite films. Furthermore, the biological assays based on endothelial cells showed that the incorporation of EW promoted cell viability. These make them potential materials with controllable mechanical property and enhanced bioactivity, providing useful options for the fabrication of tissue engineering scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2017.05.063 | DOI Listing |
Nat Energy
October 2024
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
Microscopy provides a proxy for assessing the operation of perovskite solar cells, yet most works in the literature have focused on bare perovskite thin films, missing charge transport and recombination losses present in full devices. Here we demonstrate a multimodal operando microscopy toolkit to measure and spatially correlate nanoscale charge transport losses, recombination losses and chemical composition. By applying this toolkit to the same scan areas of state-of-the-art, alloyed perovskite cells before and after extended operation, we show that devices with the highest macroscopic performance have the lowest initial performance spatial heterogeneity-a crucial link that is missed in conventional microscopy.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Kohsar University Murree, Murree, 47150, Punjab, Pakistan.
Antibiotics and pharmaceuticals exert significant environmental risks to aquatic ecosystems and human health. Many effective remedies to this problem have been developed through research. Metal-organic frameworks (MOFs) are potential constituents, for drug and antibiotic removal.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
Magneto-ionics, which refers to the modification of the magnetic properties of materials through electric-field-induced ion migration, is emerging as one of the most promising methods to develop nonvolatile energy-efficient memory and spintronic and magnetoelectric devices. Herein, the controlled generation of ferromagnetism from paramagnetic Co-Ni oxide patterned microdisks (prepared upon thermal oxidation of metallic microdisks with dissimilar Co-Ni ratios, i.e.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China; An Hui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou 239000, China. Electronic address:
In order to improve the preservation of red grape fruits, 'Chuju' polysaccharides (CCP) were cross-linked with chitosan (CS) to create CCP/CS composites with varying ratios. These composites were comprehensively characterized using FT-IR, C NMR, and SEM, which confirmed a smooth film surface and a uniform distribution of CCP. The composite films demonstrated efficacy in maintaining the quality of red grapes by mitigating shriveling and significantly reducing firmness loss by 22.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemistry & Chemical Biology, McMaster University, Hamilton L8S 4L8, Canada.
Wildfires emit large amounts of polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. As PAHs emitted from anthropogenic sources are known to accumulate in urban surface grime present on building exteriors and windows, we hypothesized that PAH-containing wildfire smoke plumes could similarly increase PAH grime loadings. To explore this hypothesis, we coupled analysis of PAHs in grime samples collected from August to November 2021 in two historically smoke-affected Canadian cities, Calgary and Kamloops, with contemporaneous field- and model-based indicators of wildfire influence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!